УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «22» июля 2022 г. №1778

Лист № 1 Всего листов 11

Регистрационный № 86215-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики электрической энергии однофазные многофункциональные КВАНТ СТ1

Назначение средства измерений

Счетчики электрической энергии однофазные многофункциональные КВАНТ СТ1 (далее - счетчики) предназначены для измерений активной и реактивной электрической энергии прямого и обратного направления по дифференцированным во времени тарифам в однофазных цепях переменного тока частотой 50 Гц.

Описание средства измерений

Принцип действия счётчиков основан на цифровой обработке входных сигналов напряжения и тока с помощью специализированной микросхемы со встроенными аналого-цифровыми преобразователями (далее – АЦП). Остальные параметры, измеряемые счетчиком, определяются расчетным путем при последующей обработке микроконтроллером измеренных значений тока, напряжения и частоты сети.

Конструктивно счетчики состоят из корпуса и крышки клеммной колодки. В корпусе расположены печатные платы, клеммная колодка, измерительные элементы.

Счетчики могут применяться как автономно, так и в составе автоматизированных информационно-измерительных систем коммерческого и технического учета электроэнергии.

Счетчики имеют в своем составе:

- измерительные элементы два датчика тока (шунты или трансформаторы тока в зависимости от исполнения) в цепях фазы и нейтрали;
 - резистивный делитель напряжения;
 - специализированную измерительную микросхему;
 - микроконтроллер;
 - энергонезависимую память данных;
- встроенные энергонезависимые часы, позволяющие вести учет электрической энергии по не менее 4 тарифным зонам суток;
 - оптическое испытательное выходное устройство по ГОСТ 31818.11-2012 для поверки;
 - оптический порт (по ГОСТ IEC 61107-2011);
- интерфейсы для подключения к системам автоматизированного учета потребленной электроэнергии;
 - датчик магнитного поля;
 - реле отключения нагрузки, в зависимости от исполнения.

В составе счетчиков, предназначенных для установки на DIN рейку или на щиток, присутствует жидкокристаллический дисплей (далее — ЖК-дисплей). Счетчик имеет в своем составе индикатор функционирования «Работа» и кнопку для ручного переключения режимов индикации «Просмотр».

Счетчики, в зависимости от исполнения, могут иметь один или более интерфейсов удаленного доступа.

Счетчик ведет учет электрической энергии по тарифам.

Счетчики содержат в энергонезависимой памяти два тарифных расписания - действующее и отложенное. Отложенное тарифное расписание вводится в действие с определенной даты, которая передается отдельной командой по интерфейсу.

Счетчики обеспечивают учет:

- количества электрической энергии нарастающим итогом суммарно независимо от тарифного расписания;
- количества электрической энергии нарастающим итогом суммарно и раздельно по действующим тарифам;
- количества электрической энергии нарастающим итогом суммарно и раздельно по действующим тарифам на начало месяца;
- количества электрической энергии нарастающим итогом суммарно и раздельно по действующим тарифам на начало суток.

Глубина хранения значений активной и реактивной электрической энергии с нарастающим итогом суммарно и раздельно по тарифам за сутки, не менее 180 суток.

Глубина хранения значений активной и реактивной электрической энергии (прием, отдача), а также запрограммированных параметров - на начало текущего расчетного периода (на 00 часов 00 минут 00 секунд первых суток, следующих за последним расчетным периодом) и не менее 36 предыдущих программируемых расчетных периодов с циклической перезаписью начиная с самого раннего значения.

Счетчики обеспечивают формирование профиля нагрузки с программируемым временем интегрирования в диапазоне от 1 до 60 минут.

Глубина хранения профиля нагрузки при интервале усреднения 60 минут - 256 суток.

Длительность сохранения в памяти счетчика информации (измерительных данных, параметров настройки, программ) при отключении питания, не менее 20 лет.

Счетчики обеспечивают в режиме реального времени измерение и расчёт следующих параметров:

- активной и реактивной электроэнергии в двух направлениях (прием, отдача);
- среднеквадратического значения фазного напряжения переменного тока;
- среднеквадратического значения силы переменного фазного тока;
- ток в нулевом проводе;
- активная, реактивная и полная электрическая мощность;
- коэффициента электрической мощности по каждой фазе;
- соотношение активной и реактивной электрической мощности;
- частота сети переменного тока;
- небаланс токов в фазном и нулевом проводе;
- положительного и отрицательного отклонения напряжения по классу S с допусками в части измерения напряжения (ГОСТ 32144-2013, ГОСТ 30804.4.30-2013).

Учетные данные, измеряемые и рассчитанные параметры сохраняются в памяти, выводятся на дисплей и передаются по интерфейсам.

Наличие в составе счетчика энергонезависимых часов и календаря обеспечивает:

- ведение даты и времени;
- внешнюю ручную и автоматическую коррекцию (синхронизацию);
- возможность автоматического переключения на летнее/зимнее время.

Счетчик имеет журналы событий, в котором фиксируются время и дата наступления событий с возможностью хранения не менее 500 событий совокупно по всем журналам, в том числе фиксируются следующие события:

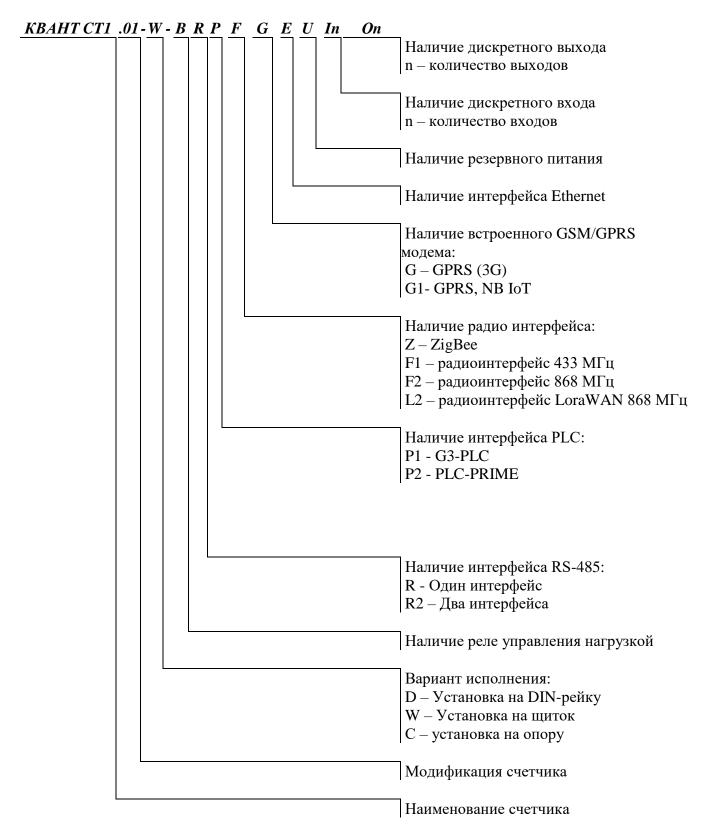
- дата и время вскрытия клеммной крышки;
- дата и время вскрытия корпуса;
- дата и время вскрытия крышки батарейного отсека;
- дата и время вскрытия крышки отсека модуля связи;
- дата и время вскрытия крышки отсека блокировки реле управления нагрузкой;
- дата и время последнего перепрограммирования (перепараметрирования);
- дата, время, тип выполненной команды;

- изменение направления перетока мощности;
- дата и время отклонения напряжения в измерительной цепи от заданного предела;
- превышение соотношения величин потребления активной и реактивной мощности;
- превышение заданного предела мощности;
- дата, время и величина воздействия постоянного или переменного магнитного поля со значением модуля вектора магнитной индукции свыше 150 мТл (пиковое значение);
 - факт связи с приборами учета, приведшего к изменению данных;
- изменение текущих значений времени и даты при синхронизации с фиксацией в журнале событий времени до и после коррекции или величины коррекции времени, на которую было скорректировано значение;
- дата, время, продолжительность и величина нарушения показателей качества электроэнергии;
 - результатов самодиагностики;
 - дата и время фиксации данных об аппаратном или программном сбое;
 - дата и время попытки доступа с неуспешной идентификацией и (или) аутентификацией;
- дата, время и причина включения и отключения встроенного коммутационного аппарата;
 - дата и время попытки доступа с нарушением правил управления доступом;
 - дата и время модификации встроенного ПО;
- попытка несанкционированного нарушения целостности программного обеспечения и параметров.

Счетчики по имеющимся интерфейсам обеспечивают возможность организации с использованием протоколов передачи данных передачу показаний, предоставления информации о результатах измерения количества и иных параметров электрической энергии, передачу журналов событий и данных о параметрах настройки, а также удаленного управления прибором учета электрической энергии, не влияющих на результаты выполняемых счетчиком измерений, включая:

- корректировку текущей даты и времени, часового пояса;
- изменение тарифного расписания;
- программирование параметров фиксации индивидуальных параметров качества электроснабжения;
 - программирование параметров срабатывания встроенного коммутационного аппарата;
 - изменение паролей доступа к параметрам;
- управление коммутационным аппаратом путем его фиксации в положении «отключено».

Счетчик может выступать в качестве инициатора связи с уровнем информационновычислительного комплекса электроустановки или информационновычислительного комплекса при наступлении различных событий, в том числе:


- при вскрытии клеммной крышки, крышки корпуса;
- воздействии магнитным полем;
- при несанкционированном перепрограммировании (параметрировании);
- превышении максимального порога мощности;
- при отклонении напряжения в измерительных цепях от заданных пределов;
- при выходе температуры внутри корпуса счетчика за границы допустимого диапазона;

Обслуживание счетчиков производится с помощью технологического программного обеспечения (конфигуратор счетчика).

Счетчики выпускаются в модификациях, отличающихся интерфейсами связи, вариантами исполнения корпуса и опциональным функционалом.

Структура условного обозначения счетчиков КВАНТ СТ1:

<u>KBAHT CT1 .01-W-B R P F G E U In On</u>

При отсутствии опции отсутствует соответствующий символ в условном обозначении.

Для радио-модулей с внешними антеннами добавляется окончание «-S».

Заводской номер наносится на маркировочную табличку или наклейку любым технологическим способом в виде цифрового или буквенно-цифрового кода.

Общий вид счетчиков с указанием места ограничения доступа к местам настройки (регулировки), места нанесения знака утверждения типа, места нанесения заводского номера, а также индикаторного устройства представлены на рисунках 1-3.

Рисунок 1 — Общий вид счетчика в корпусе типа D и W с указанием места ограничения доступа к местам настройки (регулировки), места нанесения знака утверждения типа, места нанесения заводского номера

Рисунок 2 — Общий вид счетчика в корпусе типа C с указанием места ограничения доступа к местам настройки (регулировки), места нанесения знака утверждения типа, места нанесения заводского номера

Рисунок 3 – Общий вид индикаторного устройства

Программное обеспечение

Встроенное программное обеспечение (далее – ПО) счетчиков разделено на метрологически значимую и метрологически незначимую части, имеет единую контрольную сумму и записывается в счетчик на стадии его производства.

ПО является метрологически значимым.

Метрологически значимая часть ПО, калибровочные коэффициенты и измеренные данные защищены протоколом передачи данных и не доступны для изменения без вскрытия счетчиков. Доступ к параметрам и данным со стороны интерфейсов возможен с тремя уровнями доступа (публичный, чтение, конфигуратор) с устанавливаемыми паролями. Предусмотрено использование шифрования паролей и данных.

Уровень защиты программного обеспечения «средний» в соответствии с Р 50.2.077-2014.

Конструкция счетчиков исключает возможность несанкционированного влияния на ПО счетчиков и измерительную информацию.

Идентификационные данные метрологически значимой части ΠO счетчиков приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО

Tuotinga T TigonTinginaagnoimbre gamibre II		
	Значение в зависимости от варианта исполнения	
Идентификационные данные	корпуса	
	KBAHT CT1.01-D (W)	KBAHT CT1.01-C
Идентификационное наименование ПО	CT1-D	CT1-C
Номер версии (идентификационный номер) ПО, не ниже	1.0	
Цифровой идентификатор ПО	B181	F7BD

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики

Таблица 2 – Метрологические характеристики	
Характеристика	Значение
Номинальное фазное напряжение $U_{\text{ном}}$, В	230
Установленный рабочий диапазон напряжения, В	от $0,7 \cdot U_{ ext{hom}}$ до $1,3 \cdot U_{ ext{hom}}$
Диапазон измерений среднеквадратических значений	
фазного напряжения переменного тока U_{ϕ} , В	от $0.7 \cdot U_{\text{ном}}$ до $1.3 \cdot U_{\text{ном}}$
Пределы допускаемой относительной погрешности	
измерений среднеквадратических значений фазного	
напряжения переменного тока, %	$\pm 0,5$
Базовый ток I_6 , A	5
Максимальный ток $I_{\text{макс}}$, А	60; 80; 100
Номинальная частота сети переменного тока, Гц	50
Диапазон измерений частоты переменного тока f , Γ ц	от 47,5 до 52,5
Пределы допускаемой абсолютной погрешности	
измерений частоты переменного тока, Гц	±0,05
Диапазон измерений среднеквадратических значений	
силы переменного тока в фазе I_{ϕ} /нейтрали $I_{\text{н}}$, А	от $0.05 \cdot I_6$ до $I_{ ext{makc}}$
Пределы допускаемой относительной погрешности	
измерений среднеквадратических значений силы	
переменного тока в фазе I_{Φ} /нейтрали $I_{\rm H}$, %	$\pm 1,0$
Ход внутренних часов, с/сут, не хуже	±5,0
Класс точности счётчиков при измерении активной	
электрической энергии по ГОСТ 31819.21-2012	1
Класс точности счётчиков при измерении реактивной	
электрической энергии по ГОСТ 31819.23-2012	1
	±1,5 для
	$0.05 \cdot I_6 \leq I < 0.1 \cdot I_6,$
	$\cos \varphi = 1;$
	$0,1\cdot I_6 \leq I < 0,2\cdot I_6,$
	$\cos \varphi = 0.5$ (при индуктивной
Пределы допускаемой относительной погрешности	нагрузке), 0,8 (при емкостной
измерений активной электрической мощности для	нагрузке);
счетчиков класса точности 1 по ГОСТ 31819.21-2012	±1,0 для
при номинальном напряжении, %	$0,1 \cdot I_6 \leq I < I_{ ext{make}},$
	$\cos \varphi = 1;$
	$0.2 \cdot I_6 \le I < I_{\text{Make}}$
	$\cos arphi = 0,5$ (при индуктивной
	нагрузке), 0,8 (при емкостной
	нагрузке)
П	±1,5 для
Пределы допускаемой относительной погрешности	$0.05 \cdot I_6 \leq I < 0.1 \cdot I_6,$
измерений реактивной электрической мощности для	$\sin \varphi = 1;$
счетчиков класса точности 1 по ГОСТ 31819.23-2012	$0.1 \cdot I_6 \leq I < 0.2 \cdot I_6,$
при номинальном напряжении, %	$\sin \varphi = 0.5$ (при индуктивной или
	, , , , , , , , , , , , , , , , , , ,

Продолжение таблицы 2

Продолжение таолицы 2	2000000000
Характеристика	Значение
	емкостной нагрузке);
	$0.2 \cdot I_6 \leq I < I_{\text{Makc}},$
	$\sin \varphi = 0.25$ (при индуктивной или
	емкостной нагрузке);
	±1,0 для
	$0, 1 \cdot I_6 \leq I < I_{\text{Make}},$
	$\sin \varphi = 1$ (при индуктивной или
	емкостной нагрузке);
	$0.2 \cdot I_6 \leq I < I_{\text{Makc}},$
	$\sin \varphi = 0.5$ (при индуктивной или
T v 11	емкостной нагрузке)
Диапазон измерений коэффициента электрической	
мощности $\cos \varphi$	от -1 до +1
Пределы допускаемой относительной погрешности	
измерений коэффициента электрической мощности	
$(\cos \varphi)$, %	±3
Диапазон измерений коэффициента электрической	
мощности $\operatorname{tg} \varphi$	от -57,29 до +57,29
Пределы допускаемой относительной погрешности	
измерений соотношения реактивной и активной	
электрической мощности (коэффициента реактивной	
электрической мощности tg φ), %	±3
Диапазон измерений положительного отклонения	
напряжения $\delta U_{(+)}$, %	от 0 до 30
Пределы допускаемой абсолютной погрешности	
измерений положительного отклонения напряжения,	
$\delta U_{(+)}$, %	±0,5
Диапазон измерений отрицательного отклонения	
напряжения δU(-), %	от 0 до 30
Пределы допускаемой абсолютной погрешности	
измерений отрицательного отклонения напряжения,	
δU ₍₋₎ , %	±0,5
Стартовый ток (чувствительность), А, не более	$0,004 \cdot I_{6}$
Постоянная счетчика по активной электрической	
энергии, имп/(кВт·ч)	16000
Постоянная счетчика по реактивной электрической	
энергии, имп/(квар·ч)	16000

Таблица 3 - Основные технические характеристики

Характеристика	Значение
Полная электрическая мощность, потребляемая каждой цепью	
тока при базовом токе, В А, не более	0,3

Продолжение таблицы 3

Характеристика	Значение
Полная (активная) электрическая мощность, потребляемая	Эпачение
цепью напряжения (без учета устройств связи) при	
номинальном значении напряжения, В А (Вт), не более	10 (2)
Количество десятичных знаков отсчетного устройства, не менее	8
Разрешающая способность счетного механизма отсчетного	U
устройства, кВт-ч, не более	0,01
Число тарифов, не менее	4
Число тарифных временных зон, не менее	12
Количество оптических испытательных выходов с параметрами	
πο ΓΟCT 31818.11-2012	1
Степень защиты от пыли и влаги для счетчиков в корпусах D и	
W по ГОСТ 14254-2015	IP51
Степень защиты от пыли и влаги для счетчиков в корпусе С по	
ΓΟCT 14254-2015	IP54
Максимальное значение силы переменного тока реле при	
выполнении операции отключения/включения, А, не менее	$1,1 \cdot I_{\text{Makc}}$
Габаритные размеры (длина×ширина×высота), мм, не более:	
для исполнения корпуса D	185×140×80
 для исполнения корпуса W 	185×140×80
 для исполнения корпуса С 	180×180×125
Рабочие условия измерений:	
– температура окружающей среды, °C	от -40 до +70
– относительная влажность при температуре окружающей	
среды +25 °C, %	от 40 до 98
– атмосферное давление, кПа	от 70,0 до 106,7
Масса, кг, не более	1,5
Средняя наработка на отказ, ч	320000
Срок службы встроенной батареи, лет, не менее	16
Средний срок службы, лет	30

Знак утверждения типа

наносится на панель счетчика офсетной печатью (или другим способом, не ухудшающим качества), на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Счетчик электрической энергии однофазный многофункциональный КВАНТ СТ1 ¹⁾	ВЛСТ 420.00.000	1 шт.
Φ ормуляр $^{2)}$	ВЛСТ 420.00.000 ФО	1 шт.
Руководство по эксплуатации ³⁾	ВЛСТ 420.00.000 РЭ	1 шт.
Руководство оператора ³⁾	ВЛСТ 420.00.000 РО	1 шт.

Продолжение таблицы 4

Наименование	Обозначение	Количество
Индикаторное устройство ⁴⁾	I	1 шт.
Кронштейн для крепления на опоре ЛЭП 4)	I	1 шт.
Упаковка ⁵⁾	-	1 шт.
Конфигурационное программное обеспечение 6)	_	1 шт.

Примечания:

- 1) Модификация соответствует заказу.
- 2) Поставляется в бумажном виде.
- 3) Поставляется в электронном виде. Размещено на сайте http://www.sicon.ru/prod/docs/.
- $^{(4)}$ Поставляется только со счетчиками в корпусных исполнениях «С».
- 5) Поставляется в потребительской таре.
- 6) Поставляется в электронном виде. Размещено на сайте http://www.sicon.ru/prod/po/.

Сведения о методиках (методах) измерений

приведены в разделе 1.4 «Устройство и работа» руководства по эксплуатации ВЛСТ 420.00.000 РЭ.

Нормативные документы, устанавливающие требования к средству измерений

ГОСТ 31818.11-2012 «Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии»;

ГОСТ 31819.21-2012 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2»:

ГОСТ 31819.23-2012 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии»;

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия»;

Приказ Федерального агентства по техническому регулированию и метрологии от 23 июля 2021 г. № 1436 «Об утверждении Государственной поверочной схемы для средств измерений электроэнергетических величин в диапазоне частот от 1 до 2500 Гц»;

Приказ Федерального агентства по техническому регулированию и метрологии от 14 мая 2015 г. № 575 «Об утверждении Государственной поверочной схемы для средств измерений силы переменного электрического тока от $1\cdot10^{-8}$ до 100 A в диапазоне частот от $1\cdot10^{-1}$ до $1\cdot10^6$ Гп»;

Приказ Федерального агентства по техническому регулированию и метрологии от 3 сентября 2021 г. № 1942 «Об утверждении Государственной поверочной схемы для средств измерений переменного электрического напряжения до 1000 В в диапазоне частот от $1\cdot10^{-1}$ до $2\cdot10^9$ $\Gamma_{\text{П}}$ »;

Приказ Федерального агентства по техническому регулированию и метрологии от 31 июля 2018 г. № 1621 «Об утверждении государственной поверочной схемы для средств измерений времени и частоты»;

ТУ 265163-420-75648894-21 (ВЛСТ 420.00.000 ТУ) «Счетчики электрической энергии однофазные многофункциональные КВАНТ СТ1. Технические условия».

Правообладатель

Общество с ограниченной ответственностью Завод «Промприбор» (ООО Завод «Промприбор»)

ИНН 3328437830

Адрес: 600014, Владимирская обл., г. Владимир, ул. Лакина, д. 8А

Юридический адрес: 600014, Владимирская обл., г. Владимир, ул. Лакина, д. 8, п. 59

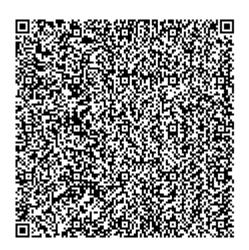
Изготовитель

Общество с ограниченной ответственностью Завод «Промприбор» (ООО Завод «Промприбор»)

ИНН 3328437830

Адрес: 600014, Владимирская обл., г. Владимир, ул. Лакина, д. 8А

Юридический адрес: 600014, Владимирская обл., г. Владимир, ул. Лакина, д. 8, п. 59


Испытательный центр

Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ» (ООО «ПРОММАШ ТЕСТ»)

Адрес: 119530, г. Москва, Очаковское ш., д. 34, пом. VII, комн. 6

Тел.: +7 (495) 481-33-80 E-mail: info@prommashtest.ru

Регистрационный номер RA.RU.312126 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

