
ТЭМ-104 теплосчетчик

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ АРВС.746967.039.000РЭ

2015-07-27 2020-02-27

v3S.17

СОДЕРЖАНИЕ

введение	
1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ	
2 ОПИСАНИЕ	
2.1 Технические характеристики	7
2.2 Рабочие условия	
2.3 МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ	
3 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ТЕПЛОСЧЕТЧИКА	
4 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ	
5 MOHTAЖ	
6 ПОДГОТОВКА К РАБОТЕ	
7 ПОРЯДОК РАБОТЫ	
7.1 Общие сведения	
7.2 ОПИСАНИЕ РЕЖИМА «КОНФИГУРАЦИЯ»	
7.3 Описание режима «Рабочий»	
7.4 Описание режима «Настройки»	
7.5 Описание режима «Поверка»	
7.6 ОПИСАНИЕ ИНТЕРФЕЙСОВ ТЕПЛОСЧЁТЧИКА	
8 МАРКИРОВКА И ПЛОМБИРОВАНИЕ	
9 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	
10 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ УСТРАНЕНИЯ	
11 УСЛОВИЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	
12 NOBEPKA	
13 ГАРАНТИИ ИЗГОТОВИТЕЛЯ	
ПРИЛОЖЕНИЕ А Карта заказа теплосчетчика	55
ПРИЛОЖЕНИЕ Б Габаритные, установочные и присоединительные	
размеры	
ПРИЛОЖЕНИЕ В Схема электрических подключений теплосчётчика	
ПРИЛОЖЕНИЕ Г Схемы меню режима «Рабочий»	
ПРИЛОЖЕНИЕ Д Схемы меню режима «Настройки»	
ПРИЛОЖЕНИЕ Е Порядок работы интеграторов теплосчетчика	
ПРИЛОЖЕНИЕ И Настройка модема	
ПРИЛОЖЕНИЕ К Дополнительные возможности схемы «ОТКРЫТАЯ»	
ПРИЛОЖЕНИЕ Л Наиболее распространенные варианты использования	
TЭM-104	90

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации предназначено для ознакомления с принципом работы, устройством, конструкцией и правилами эксплуатации теплосчетчиков ТЭМ-104 и ТЭМ-104М исполнений 2, 3, 4 (далее – теплосчетчик или прибор).

Перед началом эксплуатации теплосчетчика необходимо внимательно ознакомиться с паспортом и руководством по эксплуатации.

- В руководстве эксплуатации приведено описание всех ПО возможностей теплосчетчика. функциональных Функциональные возможности конкретного теплосчетчика определяются заказа, заполняемой заказчиком при покупке (см. ПРИЛОЖЕНИЕ А). Таким образом, некоторые функциональные возможности, описанные в данном руководстве, в Вашем теплосчетчике могут отсутствовать.
- В руководстве приняты следующие термины, сокращения и условные обозначения:
 - **ИВБ** измерительно-вычислительный блок;
 - ППР первичный преобразователь расхода;
 - **ИП** измерительный преобразователь расхода с нормированным частотным или импульсным выходным сигналом;
 - **DN** номинальный диаметр ППР или ИП;
 - **ТС** термопреобразователь сопротивлений;
 - ДИД датчик избыточного давления;
 - **Gв** верхний предел измерения расхода ППР или ИП;
 - **Gн** нижний предел измерения расхода ППР или ИП;
 - **Δtн** минимальное измеряемое значение разности температур между подающим и обратным трубопроводами;
 - **HC** нештатная ситуация (ситуация, обусловленная выходом за установленные пределы следующих параметров: расхода в одном из каналов или разности температур между подающим и обратным трубопроводами);
 - **ТН** техническая неисправность (отклонение режима работы прибора от заданного, вызванное его неисправностью, обрывом или коротким замыканием линий связи с TC):
 - **ПК** IBM совместимый персональный компьютер;
 - **Система теплопотребления (теплоснабжения)** комплекс теплопотребляющих (теплоснабжающих) установок с соединительными трубопроводами или тепловыми сетями;

Схема учета – схематическое изображение системы теплопотребления в месте установки теплосчетчика.

Изготовитель оставляет за собой право вносить в конструкцию и схему теплосчетчика изменения непринципиального характера без отражения их в руководстве.

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Теплосчетчик ТЭМ-104 предназначен для измерения и регистрации с целью коммерческого и технологического учета значений потребленного (отпущенного) количества теплоты (тепловой энергии), теплоносителя и других параметров систем теплоснабжения и горячего водоснабжения, а также для организации информационных сетей сбора данных. Теплосчётчик ТЭМ-104М класса точности 1 по СТБ EN 1434 соответствует требованиям СТБ ISO 4064 и может использоваться для коммерческого учёта объёма теплоносителя.

Области применения: предприятия тепловых сетей, тепловые пункты жилых, общественных и производственных зданий, центральные тепловые пункты, тепловые сети объектов бытового назначения, источники теплоты.

2 ОПИСАНИЕ

Теплосчетчик ТЭМ-104 является мультисистемным, многоканальным, составным, многофункциональным микропроцессорным устройством со встроенным цифробуквенным индикатором.

Теплосчетчик позволяет организовывать учет как в одной, так и в нескольких (до четырех) системах теплопотребления (теплоснабжения).

Максимальное число систем ограничено числом измерительных каналов расхода (до четырех) и температуры (до шести).

Для каждой системы теплопотребления (теплоснабжения) в режиме конфигурирования выбирается схема учета (см. таблицу 2.4). Конфигурирование проводится при пуско-наладочных работах **до** постановки прибора на коммерческий учет.

Наиболее распространенные варианты использования теплосчетчика ТЭМ-104 приведены в ПРИЛОЖЕНИИ Л.

ИВБ теплосчетчика выпускается в трех типовых исполнениях, отличающихся количеством измерительных каналов (см. таблицу 2.1). Исполнение теплосчетчика указывается в карте заказа (см. ПРИЛОЖЕНИЕ A).

Таблица 2.1

Исполнение	G _{инд} (канал1, канал2)	G _{част} (канал3, канал4)	Т	P
ТЭМ-104-4, ТЭМ-104М-4	2	2	6	4
ТЭМ-104-3, ТЭМ-104М-3	1	2	6	4
TЭM-104-2 TЭM-104M-2	2	0	4	4

Примечание: **G**_{инд} - индукционные каналы измерения расхода;

 $G_{\text{част}}$ – частотно-импульсные каналы измерения расхода; T – каналы измерения температуры; P – каналы измерения давления.

В индукционных каналах измерения расхода **G**_{инд} **(канал1, канал2)** используются первичные преобразователи расхода электромагнитного типа фланцевого и безфланцевого исполнения с номинальным диаметром от 15 до 150 мм.

В частотно-импульсных каналах измерения расхода **G**_{част} (канал3, канал4) используются расходомеры РСМ-05.05 или РСМ-05.05С, а также расходомеры, перечисленные в таблице 2.6.

Значения измеряемых, вычисляемых и установочных параметров индицируются на двухстрочном цифробуквенном жидкокристаллическом индикаторе, установленном на передней панели ИВБ. Выбор индицируемых параметров производится нажатием кнопок, находящихся на передней панели. На передней панели так же размещены три светодиодных индикатора работы теплосчётчика.

Обмен данными с теплосчетчиком производится через стандартные последовательные интерфейсы RS-232C и гальваноразвязанный RS-485.

2.1 Технические характеристики

2.1.1 Теплосчетчик обеспечивает:

измерение и индикацию:

- текущих значений объемного $\mathbf{G_V}$ [м³/ч] и массового $\mathbf{G_M}$ [т/ч] расходов теплоносителя в трубопроводах, на которых установлены ИП или ППР;
- текущих температур **t** [°C] теплоносителя в трубопроводах, на которых установлены ТС;
- текущего давления в трубопроводах **Р** [МПа], на которых установлены ДИД.

вычисление и индикацию:

- текущей разности температур Δt [°C] между подающим и обратным трубопроводами;
- мгновенной мощности Р [Гкал/ч].

вычисление, индикацию и накопление с нарастающим итогом:

- потребленного (отпущенного) количества теплоты (тепловой энергии) **Q** [Гкал], [МВт.ч], [ГДж];
- массы **M** [т] и объема **V** [м 3] теплоносителя, протекшего по трубопроводам, на которых установлены ППР или ИП;
- **Тр** времени работы прибора при поданном питании [ч:мин];
- Тнараб времени работы прибора без остановки счета с нарастающим итогом [ч:мин];
- **Тош** времени работы прибора при наличии ТН [ч:мин];
- T:dt↓, T:G↑, T:G↓ времени работы отдельно по каждой НС [ч:мин];
- архива данных.

регистрацию:

- потребленного (отпущенного) количества теплоты (тепловой энергии) за каждый час (сутки) **Q** [Гкал], [МВт.ч], [ГДж];
- массы **М** [т] и **V** объема [м³] теплоносителя, протекшего за каждый час по трубопроводам, на которых установлены ППР или ИП;
- среднечасовых и среднесуточных значений температур **t** [°C] теплоносителя в трубопроводах;
- среднечасовой и среднесуточной разности температур At [°C] между подающим и обратным трубопроводами;

- часовых и суточных измеряемых (или программируемых) среднеарифметических значений давления в трубопроводах Р [МПа];
- времени работы при поданном напряжении питания **Т** [ч:мин];
- времени работы в штатном режиме Тнараб [ч:мин] (время наработки);
- времени работы **Тош** прибора при наличии ТН [ч:мин];
- кодов возникающих НС и (или) ТН;
- времени работы (**T:dt**↓, **T:G**↑, **T:G**↓) по каждой НС [ч:мин].

Глубина архива регистрируемых параметров:

- часовых данных 1536 (64 суток);
- суточных данных 384 (12 месяцев);
- месячных записей 120 (10 лет).

Теплосчетчик выдает информацию из архива данных по запросам от внешних устройств (компьютер, контроллер АСУ и т.д.) Возможен просмотр архива данных на ЖКИ теплосчетчика.

- 2.1.2 При включении и во время работы теплосчетчик осуществляет самодиагностику с выводом на индикатор вычислителя символа НС и (или) ТН.
 - 2.1.3 Регистрируемые НС и их символы:
 - « $G\uparrow$ » программно устанавливаемый порог, выше которого будет регистрироваться НС в работе теплосчетчика ($G>G\uparrow$ расход больше порога);
 - « $G\downarrow$ » программно устанавливаемый порог, ниже которого будет регистрироваться НС в работе теплосчетчика ($G<G\downarrow$ расход меньше порога);
 - « $\Delta t \downarrow$ » программно устанавливаемый порог, ниже которого будет регистрироваться НС в работе теплосчетчика ($\Delta t < \Delta t \downarrow$ разность температур ниже порога).

<u>Примечание</u> – корректировка порогов для НС может быть выполнена пользователем в режиме «Настройки» **до** постановки на коммерческий учет.

- 2.1.4 Регистрируемые ТН и их символы:
 - «T.H. TCn» обрыв или короткое замыкание в цепях датчиков температуры.

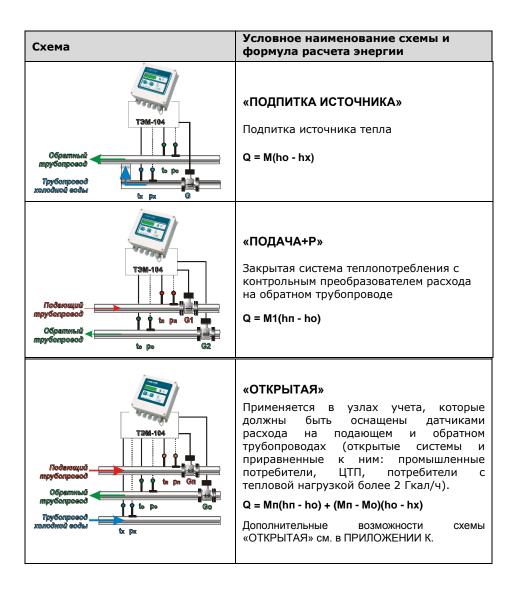
Примечание - n -номер измерительного канала.

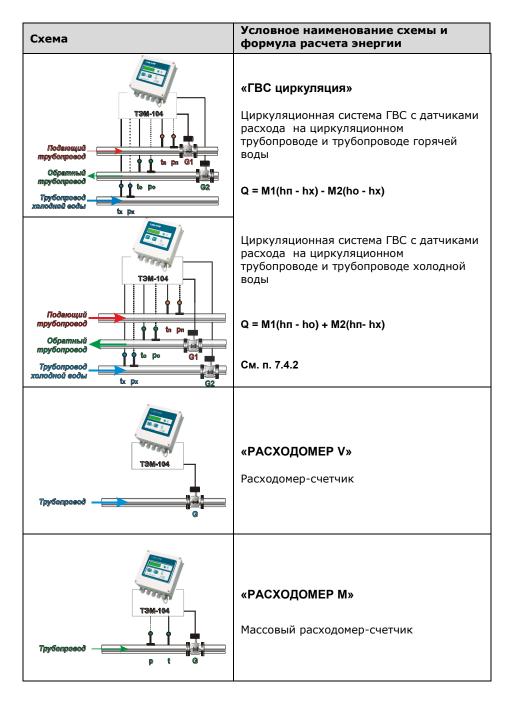
- 2.1.5 В случае возникновения ТН счет с накоплением останавливается. Останов счета при возникновении НС конфигурируется в режиме «Настройки» **до** постановки прибора на коммерческий учет.
- 2.1.6 При возникновении двух и более НС и ТН одновременно, регистрируется в архиве данных каждая из них. При этом счет времени работы в НС (ТН) ведется только в одном (приоритетном) интеграторе. Порядок работы интеграторов теплосчетчика при различных комбинациях НС и ТН приведен в таблице Е.1 (ПРИЛОЖЕНИЕ Е). В таблице 2.2 перечислены НС и ТН в порядке убывания их приоритета (Т.Н. наибольший приоритет, $\Delta t \downarrow$ наименьший приоритет).

Таблица 2.2

НС и ТН	Код НС (ТН), регистрируемый в архиве
T.H.	4
G↓	1
G↑	2
Δt↓	3

2.1.7 Расстановка запятых и число разрядов, индицируемых на ЖКИ при измерении количества теплоты, объема и массы теплоносителя приведены в таблице 2.3. Давление теплоносителя измеряется с разрядностью х.хх, температура – ххх.хх, мгновенная мощность – хх.хххх


Таблица 2.3


G в, [м³/ч]	Q [Гкал], [МВт·ч], [ГДж]	V [м³]; M [т]
.0000099999	xxxxxx.xxxxx	xxxxxxxxxxxxx
1.0000 - 9.9999	xxxxxx.xxxx	xxxxxxxxxxxxx
10.000 - 99.999	xxxxxx.xxx	xxxxxxxxxxxxx
100.00 - 999.99	WWWWW WW	WWWWWWW W
1000.0 - 2000.0	xxxxxx.xx	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

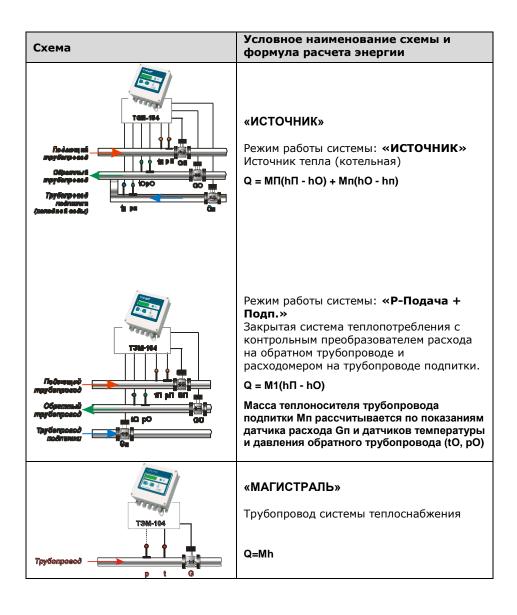

- 2.1.8 В теплосчетчике реализована возможность учета тепловой энергии и параметров теплоносителя по схемам учета, приведенным в таблице 2.4. В одном ИВБ возможна установка от одной до четырех схем учета. Таким образом, теплосчетчик позволяет одновременно вести учет в нескольких (до четырех) независимых системах. Конфигурация схем учета устанавливается пользователем в режиме «Конфигурация» (см. п.7.2) или указывается в карте заказа.
- 2.1.9 Наиболее распространенные варианты использования ТЭМ-104 приведены в ПРИЛОЖЕНИИ Л.

Таблица 2.4

Схема	Условное наименование схемы и формула расчета энергии
ТЭМ-104	«ПОДАЧА» Закрытая система теплопотребления с преобразователем расхода на подающем трубопроводе
трубопровод трубопров трубопровод трубопровопров трубопров трубопро	Q = M(hπ - ho)
T3M-104 T3M-104 T3M-104 TampyGarposod	«ОБРАТКА» Закрытая система теплопотребления с преобразователем расхода на обратном трубопроводе Q = M(hn - ho)
TpyConposed TBC TpyConposed xonodeed sodus tx px	«ТУПИКОВАЯ ГВС» ГВС без циркуляции Q = M(hr - hx)
Copennant mpydonpoeod to poed to part of the part of t	«ПОДПИТКА НСО» Подпитка независимой системы теплопотребления Q = M(ho - hx)

Схема		Условное наименование схемы и формула расчета энергии
Примечания и у	словные обозначения:	
4	` '	ся индукционные каналы 1 и 2); уются частотно-импульсные каналы 3 и 4);
1		раммная установка значений \mathbf{tx} , см. п. 7.4.2; в бопроводе XB (t_x) не устанавливается.);
ı	программно, см. п.	давлений необходимо устанавливать 7.4.2. Для измерения давления необходимо ики, которые поставляются только по азу);
t (tП, tО, tп, tо, tхв)	температура теплонос (возможна программн	ителя в соответствующем трубопроводе ая установка txв);
h (hП, hО, hп, ho, hхв)	энтальпия теплоносит	еля.

2.1.10 Полный список параметров и НС, регистрируемых теплосчетчиком для каждой схемы учета, приведен в таблице 2.4а.

Таблица 2.4а

Наименование системы	Регистрируемые параметры теплоносителя	Регистрируемые НС		
«ПОДАЧА»	Q, P, M, G, V	G↑		
«подлага	tп, to, ∆t(tп-to), pп, po	G↓ ∆t↓		
«ОБРАТКА»	Q, P, M, G, V	G↑		
«ODFATKA»	tπ, to, Δt(tπ-to), pπ, po	G↓ ∆t↓		
«ТУПИКОВАЯ	Q, P, M, G, V	G↑ ∆t↓		
ГВС»	tr, tx, ∆t(tr-tx), pr, px	G ι Δίψ		
«ПОДПИТКА НСО»	Q, P, M, G, V	G↑ ∆t↓		
«подпитка псо»	to, tx, ∆t(to-tx), po, px	G Alt		
«ПОДПИТКА	Q, P, M, G, V	G↑ Δt↓		
ИСТОЧНИКА»	to, tx, ∆t(to-tx), po, px	G Alt		
«ПОДАЧА+Р»	Q, P, M1, M2, G1, G2, V1, V2	G1↑ G2↑		
«подачатг»	tп, to, ∆t(tп-to), pп, po	G1↓ G2↓ ∆t↓		
"EBC HADIOVEGUAGE	Q, P, M1, M2, G1, G2, V1, V2	G1↑ G2↑		
«ГВС циркуляция»	tп, to, tx, tп-tx, to-tx, pп, po, px	GII GZI		
«ОТКРЫТАЯ»	Q, P, M1, M2, G1, G2, V1, V2	G1↑ G2↑		
«UIRPBITAM»	tπ, to, tx, Δt(tπ-to), pπ, po, px	G1↓ G2↓ Δt↓		
	Q, P, MП, MO, Mo, GП, GO, Gп, VП, VO,	G∏↑ GO↑ G⊓↑		
«ИСТОЧНИК»	Vπ	G∏↓ GO↓ Gn↓		
	tΠ, tO, tX, Δt(tΠ-tO), pΠ, pO, px	Δt↓		

Наименование системы	Регистрируемые параметры теплоносителя	Регистрируемые НС
«Р-ПОДАЧА+ПОДП.»		G∏↓ GO↓ Gn↓
«РАСХОДОМЕР V»	tΠ, tO, Δt(tΠ-tO), pΠ, pO G, V	Δt↓ G↑ G↓
«РАСХОДОМЕР М»	M, G, V t, p	G↑ G↓
«МАГИСТРАЛЬ»	Q, P, M, G, V t, p	G↑ G↓

Значения порогов для НС, устанавливаемые на предприятии-изготовителе по умолчанию:

 $\dot{G}\uparrow$, G1 \uparrow , G2 \uparrow , G3 \uparrow = GB

 $G\downarrow$, $G1\downarrow$, $G2\downarrow$, $G3\downarrow$ = GH

 $\Delta t \downarrow = \Delta t H (2 °C)$

- 2.1.11 В теплосчетчике имеется возможность отключения счета в любой из систем. При этом все интеграторы системы, кроме **Тр**, останавливаются. Используется, например, при отключении отопления в летний период. Отключение счета в системе осуществляется в режиме «Настройки».
- 2.1.12 Диапазоны измерения расходов теплосчётчика ТЭМ-104 в каналах с ППР (каналы 1 и 2) приведены в таблице 2.5а. Диапазоны измерения расходов теплосчётчика ТЭМ-104М в каналах с ППР (каналы 1 и 2) приведены в таблице 2.56.

Таблица 2.5а

Номинальный	Диапазон расхода			
диаметр ППР, DN,	Наиме	ньший расход,	Наибольший расход,	
ММ	G н, м ³	/ч	G в, м³/ч	
15	0,015	(0,006)	6,0	
25	0,04	(0,016)	16,0	
32	0,075	(0,03)	30,0	
40	0,1	(0,04)	40,0	
50	0,15	(0,06)	60,0	
80	0,4	(0,16)	160,0	
100	0,75	(0,3)	300,0	
150	1,5	(0,6)	600,0	

Примечания:

- под наибольшим и наименьшим расходом (Gв и Gн соответственно) подразумевается максимальное и минимальное значение расхода, при котором теплосчетчики обеспечивают свои метрологические характеристики при непрерывной работе;
- в скобках указаны значения Gн, которые обеспечиваются индивидуально отобранными ППР. Характеристика должна быть указана в карте заказа и согласована с производителем.

Таблица 2.5б

Номинальный	Диапазон расхода		
диаметр ППР, DN,	Наименьший расход,	Наибольший расход,	
ММ	Gн, м³/ч	G в, м³/ч	
15	0,015	6,3	
25	0,04	16,0	
32	0,063	25,0	
40	0,1	40,0	
50	0,16	63,0	
80	0,4	160,0	
100	0,625	250,0	
150	1,575	630,0	

Примечания:

- под наибольшим и наименьшим расходом (Gв и Gн соответственно) подразумевается максимальное и минимальное значение расхода, при котором теплосчетчики обеспечивают свои метрологические характеристики при непрерывной работе.
- $2.1.13~{
 m Makcumaльная}$ длина линий связи между ППР и ИВБ не должна превышать $100~{
 m M}.$
- 2.1.14 Преобразователи расхода с частотным (импульсным) выходным сигналом (далее ИП) подключаются к каналам G3, G4 ИВБ. Типы ИП и их основные технические характеристики приведены в таблице 2.6.

Таблица 2.6

Тип преобразователя расхода (ИП)	DN, mm	Диапазон измерения (в зависим DN), м ³ /ч Gн		Вид выходного сигнала	Максимальн. температура жидкости, °С	Номер в Госреестре
DOM OF OF (D)	45.450	-		E (N)	150	DE 02 07 1020 11
PCM-05.05 (3)	15-150	0,03-3	3-300	F/N	150	РБ 03 07 1020 14
PCM-05.05C (3)	15-150	0,015-1,5	6-600	F/N	150	РБ 03 07 1020 14
PCM-05.07 (3)	15-150	0,015	6-600	N	150	РБ 03 07 1020 14
Счетчики воды крыльчатые СВх- ххИ «СТРУМЕНЬ- ГРАН»	15-50	0,03	3,0	N	90	РБ 03 07 0280 02
Счетчики холод- ной и горячей воды крыльча- тые JSxx-NK	15-40	0,03	20,0	N	90	РБ 03 07 0302 00
Счетчики холод- ной и горячей воды турбинные Мххх-NK		1,2	500	N	90	РБ 03 07 0303 00
Счетчики воды крыльчатые ETHI	15-150	0,015	500	N	90	РБ 03 07 0442 01
PЭM-01	15-100	0,015-1,5	300	N	150	РБ 03 07 1393 01
Примечание: Э -	<u>Примечание:</u> $Э - $ электромагнитный, $x - $ обозначение конкретного исполнения счетчика.					

2.1.15 Теплосчетчик осуществляет измерение температуры теплоносителя по шести каналам. Диапазон измерения температуры теплоносителя в трубопроводах от 0 до 150 °C.

Рекомендуемая конфигурация частотно-импульсного выхода - «сухой контакт»

- 2.1.16 Сопротивление каждого провода четырёхпроводной линии связи между ИВБ и ТС должно быть не более 100 Ом.
- 2.1.17 Имеется возможность создания программируемых каналов температуры (вместо последнего канала измерения температуры в каждой системе). Программируемые каналы создаются пользователем в режиме «Конфигурация» **до** постановки прибора на коммерческий учет.
- 2.1.18 Диапазон измерения разности температур ИВБ от 2 до 150 °C. Диапазон измерения разности температур комплектом ТС указан в их эксплуатационной документации.
- 2.1.19 Теплосчетчик осуществляет измерение давления по четырем каналам (при дополнительной комплектации датчиками давления). Диапазон измерения давления от 0 до 2,5 МПа. Границы диапазона измерения давления (заводская установка $0\div1,6$ МПа) и диапазон измерения токового сигнала от ДИД ($0\div5$, $0\div20$ или $4\div20$ mA) устанавливается в режиме «Настройки» **до** постановки прибора на коммерческий учет.

В базовый комплект поставки ДИД не входят. Предусмотрена возможность программной установки значений избыточного давления в диапазоне 0-2,5 МПа.

Предусмотрена установка договорных значений давления, которые будут индицироваться в случае обрыва или короткого замыкания в цепях датчиков давления (см. п. 7.4.2.).

- 2.1.20 Для технологических нужд (проверка функционирования прибора, правильности счета и т.п.) имеется возможность установить программное значение для любого из каналов измерения расхода, температуры или давления. Установка программных значений производится в режиме «Настройки».
- 2.1.21 Теплосчетчик обеспечивает измерение календарного времени с индикацией числа, месяца, года, часов, минут и секунд.
- 2.1.22 Теплосчетчик может выводить (указывается при заказе, см. ПРИЛОЖЕНИЕ А) информацию о текущем объемном расходе или температуре в виде сигнала постоянного тока $4\div20~\text{mA}$ (сопротивление нагрузки не более 500~Om). Параметр (G1÷G4, t1÷t6), преобразуемый в токовый сигнал, выбирается в режиме «Настройки».

Предусмотрена возможность установки фиксированного значения токового сигнала в диапазоне от 4 до 20 mA с дискретностью 1 mA.

- 2.1.23 Теплосчетчик обеспечивает передачу текущих значений параметров системы теплоснабжения и данных архива по последовательному интерфейсу RS-232C или гальванически развязанному RS-485. Скорость обмена устанавливается в режиме «Настройки» и может принимать значения 38400, 57600 бит/сек для RS-232C и 9600, 19200 для RS-485. Протокол обмена теплосчётчика предусматривает реализацию на базе интерфейса RS-485 сети теплосчётчиков.
- 2.1.24 Максимальная длина линии связи при передаче данных по интерфейсу RS-232C 15 метров.
- 2.1.25 Максимальная длина линии связи при передаче данных по интерфейсу RS-485 без ретранслятора при использовании неэкранированной витой пары на основе провода МГШВ 0,35-1200 метров.
- 2.1.26 Реализована возможность передачи текущих значений параметров системы теплоснабжения и данных архива через каналы сетей Internet, Ethernet, GSM, GPRS при наличии соответствующего оборудования.
- 2.1.27 Питание ИВБ теплосчетчика осуществляется от сети переменного тока напряжением от 187 до 253 В, частотой (50 \pm 1) Гц.
- 2.1.28 Потребляемая мощность ИВБ не более 10ВА. Суммарная потребляемая мощность (ИВБ и ИП) не более 30 ВА.

- 2.1.29 Время установления рабочего режима не более 30 мин.
- 2.1.30 Масса теплосчетчика определяется числом входящих в его состав измерительных преобразователей и массой вычислителя, не превышающей 2 кг. Масса измерительных преобразователей указана в их эксплуатационной документации. Масса ППР в зависимости от DN приведена в таблице 2.7.

Таблица 2.7

Номинальный	Масса ППР, кг (не более)			
диаметр, DN, мм	ПРП	ПРПМ		
15	-	5		
25	-	5		
32	-	5		
40	-	7		
50	-	7		
80	19	8,5		
100	25,5	-		
150	32	-		

- 2.1.31 Габаритные размеры теплосчетчика определяются габаритными размерами ИВБ, габаритными размерами входящих в его состав измерительных преобразователей и их взаимным расположением с учетом соединительных цепей в зависимости от комплектации теплосчетчика. Габариты ИВБ и ППР приведены в ПРИЛОЖЕНИИ Б.
- 2.1.32 Теплосчетчик сохраняет информацию в энергонезависимой памяти при отключении питания в течение не менее 10 лет при соблюдении правил хранения и транспортирования.
- 2.1.33 По условиям окружающей среды согласно СТБ EN 1434-1 теплосчетчики относятся к исполнению A.
- 2.1.34 Напряжение индустриальных радиопомех, создаваемых теплосчетчиком, не превышает значений, установленных в СТБ ЕН 55022 для оборудования класса В.
- 2.1.35 ИВБ теплосчетчика соответствует степени защиты IP54; ПРП, и ПРПМ IP55 по ГОСТ 14254. Степень защиты входящих в комплект теплосчетчика измерительных преобразователей (ИП, ТС и ДИД) указана в их эксплуатационной документации.
- 2.1.36 По способу защиты человека от поражения электрическим током ИВБ теплосчетчика соответствует классу II по ГОСТ 26104, ППР классу 01 по ГОСТ 26104). Классы защиты ИП указаны в их эксплуатационной документации.
- $2.1.37~{\rm ИВБ}$ теплосчетчика устойчив к воздействию синусоидальных вибраций частотой $10\div55~{\rm \Gamma}$ ц и амплитудой смещения ниже частоты перехода $0.15~{\rm Mm}$.

- 2.1.38 Теплосчетчик в транспортной таре выдерживает при перевозке в закрытом транспорте (железнодорожные вагоны, закрытые автомашины, трюмы судов):
 - воздействие температуры от минус 25 °C до плюс 55 °C;
 - воздействие относительной влажности (95±3)% при температуре окружающего воздуха до 35°C;
 - вибрацию по группе N2 ГОСТ 12997;
 - удары со значением ударного ускорения (пикового) 98 м/сек^2 и длительностью ударного импульса 16 мс, число ударов 1000 ± 10 для каждого направления.
- 2.1.39 Теплосчетчик устойчив к воздействию внешнего магнитного поля с напряженностью до 400 А/м и воздействию статического магнитного поля напряженностью до 100кА/м.
- 2.1.40 Теплосчетчик устойчив к динамическим изменениям напряжения сети электропитания для класса 2 по СТБ МЭК 61000-4-11, критерий качества функционирования b.
- 2.1.41 Теплосчетчик устойчив к наносекундным импульсным помехам уровня 2 по СТБ МЭК 61000-4-4, критерий качества функционирования b.
- 2.1.42 Теплосчетчик устойчив к микросекундным импульсным помехам большой энергии класса 1 СТБ МЭК 61000-4-5, критерий качества функционирования b.
- 2.1.43 Теплосчетчик устойчив к радиочастотному электромагнитному полю степени жесткости 2 по СТБ ГОСТ Р 51317.4.3, критерий качества функционирования А.
- 2.1.44 Теплосчетчик устойчив к электростатическим разрядам степени жесткости 3 по СТБ МЭК 61000-4-2. Критерий качества функционирования A.
- 2.1.45 Средняя наработка на отказ теплосчетчика не менее 20000 часов.
 - 2.1.46 Средний срок службы теплосчетчика не менее 10 лет.

2.2 Рабочие условия

- 2.2.1 Температура окружающей среды от +5 °C до +55 °C.
- 2.2.2 Относительная влажность воздуха до 95% при температуре до 30 °C.
- 2.2.3 Максимальное рабочее давление в трубопроводе 1,6 МПа $(16,0 \text{ кгс/см}^2)$, по заказу 2,5 МПа $(25,0 \text{ кгс/см}^2)$.
- 2.2.4 Теплоноситель должен соответствовать СНиП 2.04.07-86. Если содержание примесей (ферромагнитных включений) превышает

норму, то возможно выпадение осадка на футеровке ППР, что в некоторых случаях может привести к снижению точности измерений.

2.3 Метрологические характеристики

Теплосчетчик ТЭМ-104 соответствует классу В по СТБ ГОСТ Р 51649 (класс 2 СТБ EN 1434-1). По заказу потребителя теплосчетчик ТЭМ-104 изготавливается соответствующим классу С (класс 1 по СТБ EN 1434-1). Теплосчётчик ТЭМ-104М класса точности 1 по СТБ EN 1434 соответствует требованиям СТБ ISO 4064 и может использоваться для коммерческого учёта объёма теплоносителя.

- 2.3.1 Пределы допускаемой относительной погрешности измерительного канала количества теплоты по СТБ ГОСТ Р 51649 не превышают значений, вычисленных по формулам, приведенным в таблице 2.8.
- 2.3.2 Пределы допускаемой относительной погрешности при измерении объемного и массового расхода, объема и массы теплоносителя по каждому каналу не превышают значений, вычисленных по формулам, приведенным в таблице 2.9.

Таблица 2.8

Класс прибора	Формулы для вычисления пределов допускаемой относительной погрешности $\delta_{0 \text{ max}}$ %
В	$\delta_{Q \text{ max}} = \pm (3+4 \Delta t_{H} / \Delta t + 0.02G_{B}/G)$
С	$\delta_{\text{Q max}} = \pm (2+4 \Delta t_{\text{H}} / \Delta t + 0.01 G_{\text{B}}/G)$

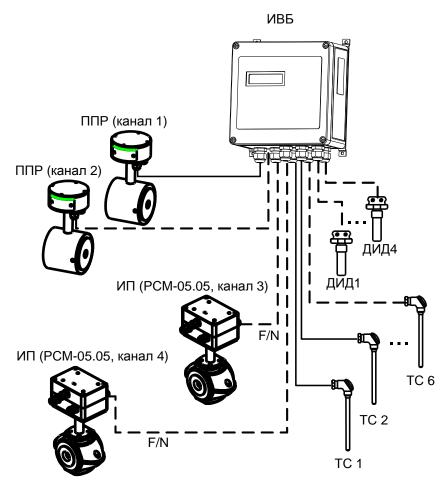
Примечания:

 Δt – значение разности температур между подающим и обратным трубопроводами, °C;

G – измеренное значение объемного расхода теплоносителя, M^3/V

Таблица 2.9

Класс	Диапазон	Пределы допускаемой относительной погрешности, %, для:			
прибора	измерения	каналов с ППР (1 и 2 каналы)	каналов с ИП (3 и 4 каналы)		
В	$G_H \leq G < 0.04G_B$	±(1,5+0,01G _B /G)	$\pm(2+0.02G_{B}/G)$		
Б	$0.04G_{B} \leq G \leq G_{B}$	±(1,5+0,01G _B /G)	± 2,0		
_	$G_H \leq G < 0.04G_B$	±(0,8+0,004G _B /G)	$\pm(1+0.01G_{B}/G)$		
C	$0.04G_{\scriptscriptstyle B} \leq G \leq G_{\scriptscriptstyle B}$	±(0,6+0,004G _B /G)	± 1,0		
Примечан		ренное значение	объемного расхода		
теплоноси	ітеля, м³/ч.				


- 2.3.3 Пределы допускаемой абсолютной погрешности при измерении температуры, °C:
- при комплектации ТС класса A по ГОСТ 6651 $\pm (0,35+0,003 \cdot t)$ при комплектации ТС класса B по ГОСТ 6651 $\pm (0,6+0,004 \cdot t)$

где t - измеряемая температура в градусах Цельсия.

- 2.3.4~ Пределы допускаемой приведенной погрешности ИВБ при преобразовании сигналов от датчиков давления: $\pm 0,15~$ %. Пределы допускаемой приведенной погрешности датчиков избыточного давления: $\pm 1,0~$ %.
- 2.3.5 Пределы допускаемой относительной погрешности измерения давления (при наличии датчиков избыточного давления): ± 2.0 %.
- 2.3.6 Пределы допускаемой относительной погрешности при измерении времени: $\pm~0.01~\%$.
- 2.3.7 Пределы допускаемой приведенной погрешности преобразования измеренного значения выбранного параметра в унифицированный сигнал постоянного тока: ± 0.5 %.

3 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ТЕПЛОСЧЕТЧИКА

Теплосчетчик состоит из ИВБ и подключаемых к нему ППР, ИП, ТС и ДИД. Схематическое изображение теплосчетчика приведено на рис. 1. Штриховой линией отображены линии связи с измерительными преобразователями, наличие которых определяется исполнением теплосчетчика (указывается в карте заказа).

<u>Примечание</u> – вместо РСМ-05.05 в каналах 3 и 4 возможно применение ИП других типов (см. таблицу 2.6)

рис. 1

ИВБ теплосчётчика построен на базе специализированной микропроцессорной системы, обеспечивающей сбор информации по аналоговым и частотно импульсным входам (F/N), её последующую обработку, накопление, хранение И передачу обработанной информации на устройство индикации, аналоговые и цифровые выходы.

Функционально ИВБ теплосчётчика состоит из блока аналоговой обработки сигнала, блока цифровой обработки сигнала и блока питания. На плате блока аналоговой обработки сигнала расположены клеммы для подключения ППР, ИП, ТС и ДИД. На плате блока цифровой обработки сигнала расположены выводы унифицированного выходного сигнала постоянного тока, а так же порты последовательных интерфейсов RS-232C, RS-485.

Принцип действия ППР основан на явлении электромагнитной индукции. При движении электропроводной жидкости в магнитном поле между электродами ППР возникает ЭДС электромагнитной индукции, пропорциональная скорости течения жидкости. ЭДС индукции поступает в блок аналоговой обработки сигнала ИВБ, где она усиливается и преобразуется в цифровую форму.

ИП проводит измерение объемного расхода теплоносителя и преобразование в частотный или импульсный сигналы, пропорциональные расходу теплоносителя.

Измерение температуры теплоносителя осуществляется путём измерения падения напряжения на ТС при протекании через него тока, задаваемого источником тока блока аналоговой обработки сигнала. Далее, после преобразования измеренного напряжения в цифровую форму, оно поступает в блок цифровой обработки сигнала.

Измерение давления осуществляется путём непосредственного измерения силы тока, поступающего от ДИД. После преобразования измеренного сигнала в цифровую форму он также подаётся в блок цифровой обработки сигнала.

На основе измеренных сигналов и установочных параметров теплосчётчика в блоке цифровой обработки сигнала осуществляется вычисление тепловой энергии, тепловой мощности, объёмного, массового расходов и температуры теплоносителя, протекшего объёма и массы теплоносителя. Вычисленные значения выводятся на устройство индикации. В блоке цифровой обработки сигнала также осуществляется преобразование выбранного параметра в сигнал постоянного тока и формирование посылок последовательных интерфейсов RS-232C или RS-485.

Измерительный канал **Q** теплосчетчика представляет собой совокупность, состоящую из канала измерения расхода, двух каналов

измерения температуры, двух каналов измерения сигналов от датчиков избыточного давления, обеспечивающую вычисление количества теплоты и других физических величин по данным об измеренных параметрах теплоносителя.

Вычисление количества теплоты ${f Q}$ для каждого измерительного канала осуществляется по формуле:

$$Q = \int_{T_1}^{T_2} G \cdot \boldsymbol{\rho} \left(h_1 - h_2 \right) \cdot dT$$
 (3.1)

где G-объемный расход теплоносителя в трубопроводе, на котором установлен первичный преобразователь, м³/ч;

 ρ -плотность теплоносителя в трубопроводе, на котором установлен первичный преобразователь, кг/м 3 ;

 h_1 -удельная энтальпия теплоносителя в подающем трубопроводе, ГДж/кг;

 h_2 -удельная энтальпия теплоносителя в трубопроводе холодного водоснабжения (для систем ГВС) или удельная энтальпия теплоносителя обратном трубопроводе (для систем отопления), ГДж /кг;

Т1,Т2-время начала и конца измерения соответственно, ч.

Вычисление удельной энтальпии (h) и плотности (р) теплоносителя производится по формулам, указанным в рекомендации МИ 2412-97.

4 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

Источником опасности при монтаже и эксплуатации теплосчетчика являются:

- сетевое напряжение (до 253 В);
- давление жидкости в трубопроводах (до 2,5 MПа);
- температура жидкости и трубопровода (до 150 °C).

Безопасность эксплуатации прибора обеспечивается:

- изоляцией электрических цепей составных частей теплосчетчика;
- надёжным заземлением ИП;
- прочностью корпуса ППР, ИП и защитных гильз ТС;
- герметичностью соединения ППР и ИП с трубопроводом;

При эксплуатации теплосчетчика необходимо соблюдать общие требования безопасности:

- запрещается эксплуатация прибора со снятой крышкой;
- запрещается демонтировать ППР или ИП до полного снятия давления в трубопроводе.
- перед проведением работ необходимо убедиться в том, что на трубопроводе отсутствует опасное для жизни напряжение.

При установке и монтаже теплосчетчика необходимо соблюдать требования ГОСТ 12.3.003, ГОСТ 12.3.032, ГОСТ 12.3.036, а также правил пожарной безопасности и техники безопасности.

При эксплуатации необходимо соблюдать «Правила устройства электроустановок», «Правила техники безопасности при эксплуатации электроустановок» и «Общие правила пожарной безопасности для промышленных предприятий».

При обнаружении внешних повреждений прибора или сетевой проводки следует отключить теплосчетчик от сети до выяснения причин неисправности специалистом по ремонту.

Запрещается установка и эксплуатация прибора в взрывоопасных зонах всех классов.

Для тушения пожара, при возгорании теплосчетчика, разрешается использовать только углекислотные огнетушители типа ОУ-2, ОУ-5, ОУ-10 и др.

5 МОНТАЖ

Монтаж теплосчетчика осуществляется в соответствии с «Инструкция по монтажу теплосчетчиков ТЭМ-104», APBC 746967.039.000 ИМ.

6 ПОДГОТОВКА К РАБОТЕ

Проверить правильность монтажа электрических цепей в соответствии с электрической схемой подключения, приведенной на рис.В.2 (ПРИЛОЖЕНИЕ В).

Плотно закрыть крышки клеммных коробок ППР, ИП, ТС и ДИД.

Установить на место переднюю панель ИВБ и плотно завинтить болты крепления передней панели ИВБ к корпусу ИВБ.

Подать расход теплоносителя под рабочим давлением и проверить герметичность соединения ППР, ИП, защитных гильз термопреобразователей и ДИД с трубопроводом. Течь и просачивание не допускаются.

Включить питание теплосчетчика. Убедиться, что после включения питания включилась подсветка индикатора и на ЖКИ индицируются значения текущей даты и времени.

Проверить правильность установки программируемых параметров, отсутствие нештатных ситуаций и технических неисправностей.

Убедиться в индикации измеряемых параметров – расхода (G), температуры (t), давления (p).

7 ПОРЯДОК РАБОТЫ

К работе допускается теплосчетчик, не имеющий повреждений составных частей, нарушения пломб и подготовленный к работе в соответствии с разделом 6 настоящего руководства.

7.1 Общие сведения

- 7.1.1 Пользовательское меню прибора условно разделено на уровни. При включении прибор находится в первом (верхнем) уровне и индицирует текущие время и дату.
- 7.1.2 Управление работой теплосчётчика осуществляется четырьмя кнопками, расположенными на передней панели, и кнопкой «служебная», расположенной на плате цифровой обработки (см. рис. В.1, ПРИЛОЖЕНИЕ В).

Обозначение	Наименование	Основное функциональное назначение
(=	«влево»	Переход между окнами меню в
	«вправо»	пределах одного уровня, изменение параметра.
	«вход»	Вход в меню параметров или настроек выбранной системы теплоснабжения.
(3)	«выход»	Выход на уровень вверх из любого меню.
	«служебная»	Активация режима изменения параметра.

- 7.1.3 О состоянии теплосчётчика можно судить по состоянию трех светодиодов, расположенных на панели управления. Мигание зеленого светодиода примерно раз в секунду свидетельствует о нормальной работе теплосчётчика. Мигание красного светодиода сигнализирует о наличии НС, непрерывное свечение о наличии ТН. Свечение желтого светодиода сигнализирует о передаче данных по интерфейсу RS-485.
 - 7.1.4 Теплосчётчик имеет четыре режима работы:
 - **«Конфигурация»** предназначен для выбора и установки теплотехнических схем учета (см. таблицу 2.4).
 - **«Рабочий»** в этом режиме индицируются измеренные и вычисленные значения параметров систем теплопотребления;
 - «Настройки» предназначен для просмотра и корректировки установочных параметров теплосчётчика.
 - **«Поверка»** предназначен для проведения поверки теплосчётчика.

7.2 Описание режима «Конфигурация»

Для входа в режим «Конфигурация» необходимо при включении теплосчетчика в сеть удерживать нажатой кнопку «служебная».

Порядок перехода между окнами в режиме «Конфигурация» изображён на рис. 7.1. Выбор количества систем и типа каждой системы осуществляется при помощи кнопок «вправо» или «влево», переход к следующей системе – кнопкой «вход». Выход из режима «Конфигурация» без записи конфигурации – кнопкой «выход».

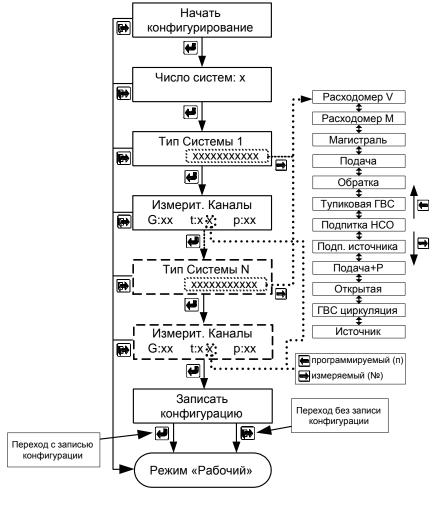
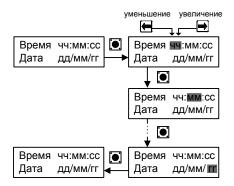


Рис. 7.1

Примечания:

- 1. Если требуется вести учет по схеме «Источник», то при конфигурировании эта схема должна устанавливаться первой;
- 2. При конфигурировании двухпоточных систем («Открытая», «ГВС циркуляция») следует учитывать то, что каналы измерения расхода в подающем и обратном трубопроводах одной системы должны быть либо оба индукционные, либо оба частотно-импульсные;
- 3. Следует иметь в виду, что число каналов измерения расхода не может превышать 4, а число каналов измерения температуры не может превышать 6.
- 4. При записи конфигурации архив и интеграторы прибора обнуляются.


7.3 Описание режима «Рабочий»

7.3.1 При включении теплосчетчик автоматически устанавливается в режим "Рабочий" и при отсутствии НС и (или) ТН начинает расчет и накопление суммарным итогом количества теплоты по всем системам.

Режим "Рабочий" предназначен для индикации параметров систем теплоснабжения. В режиме "Рабочий" можно также просмотреть текущее время, время наработки по каждой системе, времена работы при возникновении НС в системах теплоснабжения и архив регистрируемых параметров.

Переход от одного индицируемого параметра к другому осуществляется равноправно в обе стороны посредством нажатия кнопок «вправо» или «влево», переход к отображению параметров конкретной системы – кнопкой «вход», выход из режима просмотра параметров системы – кнопкой «выход».

7.3.2 Установка текущего времени и даты:

7.3.3 Порядок перехода между окнами режима «Рабочий» изображён на рис. 7.2.

Режим «Рабочий»

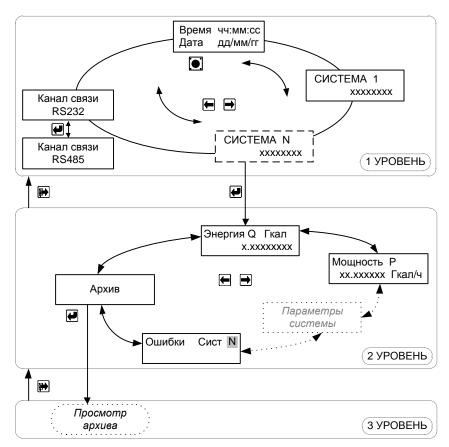


Рис. 7.2

Режим просмотра архива данных

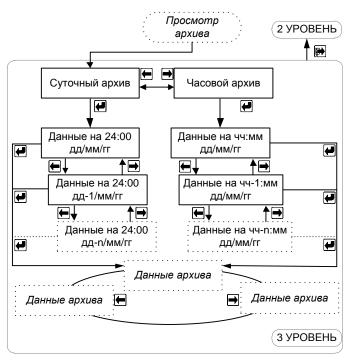
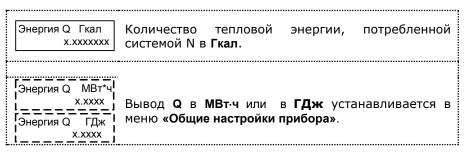


Рис. 7.2a

Описание окон режима «Рабочий» (штриховой линией выделены окна, отображение которых зависит от установок в режиме «Настройки»).


Окна меню 1 уровня

Время чч:мм:cc Дата дд/мм/гг Текущие время и дата.	
---	--

Порядковый номер системы (N) и наименование применяемой в системе схемы учета («Расходомер V», «Расходомер М», «Магистраль», «Подача», «Обратка», «Тупиковая ГВС», «Подпитка НСО», «Подпитка Источника», «Подача+Р», «Открытая», «ГВС циркуляция», «Источник» («Р-подача+Подп.»)). ОТКЛ отображается, если система отключена (см. п. 2.1.11)

Активный канал связи (RS-232C или RS-485), изменяется при помощи кнопки «вход». При отсутствии обмена данными в течении 60 сек, канал связи автоматически изменяется на установленный в режиме «Настройки».

Окна меню 2 уровня

		мгновенной	В	системе	N,
хх.хххх Гкал/ч	измеряемо	й в Гкал/ч .			

Объем V м ³ х.ххххххх	Объем тег измеряемыі	ілоносителя й в м ³.	с нар	астающим	итогом,
Объем V1 м³ х.ххххххх	В случае, измерения	когда в си расхода,		несколько м тепло	

Объем V2 м³ х.ххххххх	считается отдельно по каждому из них (V, V1, V2, V3).
Объем V3 м³ х.ххххххх	
Macca M T X.XXXXXX	Масса теплоносителя с нарастающим итогом,
Macca M1 T	измеряемая в тоннах. В случае, когда в системе несколько каналов
Macca M2 T	измерения расхода, масса теплоносителя измеряется отдельно по каждому из них (M , M1 , M2 ,
Macca M3 T	M3).

Массовый расход G х.хххх т/ч	Массовый расход теплоносителя, измеряемый в т/ч.
G1 x.xxxx т/ч G2 x.xxxx т/ч	В случае, когда в системе несколько каналов измерения расхода, расход теплоносителя
Массовый расход G3 х.хххх т/ч	измеряется отдельно по каждому из них (G, G1, G2, G3).

Объемный расход G х.хххх м ³ /ч	Объемный расход теплоносителя в системе N , измеряемый в \mathbf{m}^3/\mathbf{q} .
G1 x.xxxx m³/4 G2 x.xxxx m³/4	В случае, когда в системе несколько каналов измерения расхода, расход теплоносителя
Объемный расход G3 х.хххх м³/ч	

Температу t ххх.>	/pa kx ºC	
1	c.xx °C c.xx °C	Townsharing reguesiating p 9C
-	.xx °C .xx °C	Температура теплоносителя в °С.
	x.xx °C .xx °C	

tn-to xxx.xx °C Разн. температур xxx.xx °C Разность температур трубопроводами, между измеряемая в °С. Разн. температур to-tx xxx.xx °C t⊓-tx xxx.xx °C to-tx xxx.xx °C

Давление
р х.ххх МПа
рп х.ххх МПа
ро х.ххх МПа
рг х.ххх МПа
рх х.ххх МПа
ро х.ххх МПа
ро х.ххх МПа
ро х.ххх МПа
рх х.ххх МПа
рх х.ххх МПа

Давление теплоносителя, измеряемое в МПа. (Возможна программная установка значения давления в пределах от 0.1 до 2.5 МПа с шагом в 0.1 МПа, см. режим «Настройки»).

Траб ч:мм Тнараб ч:мм Время работы и время наработки прибора в часах и минутах.

Время в ошибке Тош. ч:мм Тош ч:мм Т:⊿t↓ ч:мм

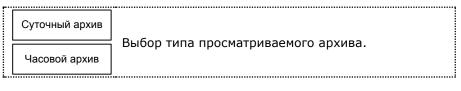
Тош. - Время работы прибора при наличии ТН. **Т**: Δt ↓ - Время работы прибора при НС Δt < Δt ↓.

T:G ↑ ч:мм T:G ↓ ч:мм

Т:G↑ – Время работы прибора при НС G> G↑.

Т:G ↓ Ч:ММ Т:G ↓ – Время работы прибора при НС G> G ↓.

Время в ошибке Т:G ↑ Ч:ММ G↑=GB, G↓=GH.


Ошибки Сист N

Индикация символов HC и TH в системе N «G1», «G1», «G1», «G1», «G31», «G31»,

Архив

Архив регистрации параметров.

Окна меню 3 уровня

 Данные на чч:мм	Выбор даты (времени) за которую (которое) будет
 дд/мм/гг	выводиться архив.

7.3.4 Порядок перехода между окнами в режиме «Рабочий» для каждой схемы приведен на рис. Г.1-Г.11, ПРИЛОЖЕНИЕ Г.

7.4 Описание режима «Настройки»

7.4.1 Для входа в режим работы теплосчетчика «Настройки» необходимо, находясь в любом меню режима «Рабочий», одновременно нажать кнопки «влево» и «вправо». Порядок перехода между окнами в режиме «Настройки» изображён на рис. 7.3.

Значения параметров настроек, устанавливаемых на предприятии-изготовителе по умолчанию, подчеркнуты в п.7.4.2.

Для коррекции параметра необходимо:

- 1. При помощи кнопок «вправо» или «влево» выбрать корректируемый параметр;
- 2. Нажать кнопку «служебная»* (при этом корректируемый параметр начнет мигать);
- При помощи кнопок «вправо» или «влево» изменить значение параметра (для активации режима ускоренного изменения нужно дополнительно нажать кнопку «ввод»);
- 4. Повторно нажать кнопку «служебная».

Коррекция некоторых параметров недоступна для пользователя. Значения этих параметров устанавливаются на предприятииизготовителе при выпуске из производства.

36

^{*} для активации режима изменения параметров **«Адрес в сети»**, **«Интерфейс»** и **«Скорость обмена»** можно воспользоваться кнопкой **«вход»**

Режим «Настройки»

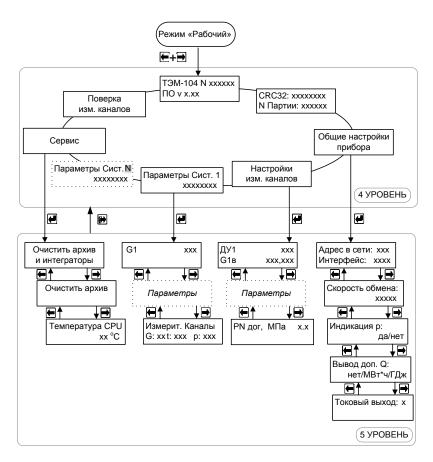


Рис. 7.3

7.4.2 Описание окон режима «Настройки»

Общие настройки прибора

Адрес в сети: xx Интерфейс: xxxxx Установка адреса прибора (<u>1</u>-99) в сети RS-485 и типа активного интерфейса (**RS-232C или RS-485**).

Скорость обмена: ххххх

Установка скорости обмена прибора с внешними устройствами (принимает значения из ряда <u>9600</u>, **19200**, **28800**, **38400**, **57600** бит/сек для RS-232C и **9600**, **19200** для RS-485).

Индикация р: да/нет

Настройка наличия индикации давления.

Вывод доп. Q: нет/ МВт*ч/ГДж Включение дополнительного экрана для отображения количества теплоты Q в МВт*ч или Γ Дж.

Токовый выход: х

Выбор параметра, преобразуемого в токовый сигнал 4-20mA. Выбирается из ряда: **«расход канала N» (N=G1...G4)**, **«темпер. канала N» (N=T1...T6)** или программируемый **«П» (In= 4...20 mA)**.

Настройки измерительных каналов

ДУ1	XXX
G1в	XXX,XXX
ДУ2	xxx

 G2в
 xxx,xxx

 ДУЗ
 xxx

Номинальный диаметр ППР и ИП, верхний предел измерения расхода **GB** (коррекция недоступна).

G1↓,% G1↓,%	XXX
G2↑,%	xxx
G2↓,%	xxx
G3↑, %	XXX
G3↓, %	XXX

G4↑, % xxx G4↓, % xxx Выбор минимального и максимального порога, в соответствии с которым будут регистрироваться НС в работе теплосчетчика, **% от GB**. Изменяется в пределах 30%-120% с дискретностью в 1% для **G**↑ и 0-10% с дискретностью в 0,05% для **G**↓.

Тип входов G3,G4 частотные/импульсные Частотно-импульсные каналы измерения расхода ИВБ (3 и 4) конфигурируются в зависимости от вида выходного сигнала ИП – на прием сигнала, пропорционального текущему значению объемного расхода (частотный сигнал от ИП) или на прием сигнала, пропорционального накопленному в ИП значению объема (импульсный сигнал от ИП). Частотно-импульсные каналы измерения расхода конфигурируются на прием сигнала одного вида, т.е. либо оба частотные, либо оба импульсные.

G4в xxx,xxx Fmax4, Гц xxxxxx

G3в ххх,ххх Fmax3, Гц хххххх Установка максимального расхода и частоты, соответствующей максимальному расходу при использовании ИП с частотным выходным сигналом.

Установка максимального расхода и веса импульса при использовании ИП с импульсным выходным сигналом.

Тип ТСП: х,хххх

Kv G4, л/и

Установка типа применяемых ТС (<u>1.3850</u> или **1.3910**).

ДИД N: x-xx mA p max = x.x MПa

Установка диапазона измерения токового сигнала от ДИД (**«0-5 mA»**; **«0-20mA»**; **«4-20 mA»**) и верхнего предела измерения давления (**от 0 до 2.5 МПа**).

РN дог, МПа х.х

Установка договорных значений давления, индицируемых в случае обрыва или короткого замыкания линий ДИД (0.1-0.5-1.6 МПа с шагом 0.1 МПа).

Настройки параметров систем

G xxx
G1 xxx
G2 xxx

Настройка каналов измерения расхода – <u>изм</u> (измеряемое) или **прогр** (программируемое) значение. В случае установки **прогр** появляется окно:

G прогр G = xxx %

в котором можно установить значение расхода в % от Gв (1-120%) с шагом в 1%.

	Настройка каналов измерения температуры – <u>изм</u> (измеряемое) или прогр (программируемое)
T xxx	значение. В случае установки изм появляется окно:
Тп ххх	Т изм Изм. канал х
To xxx	в котором можно при необходимости изменить установленный номер измерительного канала
Tr xxx	температуры.
	В случае установки прогр появляется окно:
Tx xxx	T nporp T = xxx °C
	в котором можно установить значение температуры от 0 до 150°C с шагом в 1°C .
	Настройка каналов измерения давления – изм (измеряемое) или прогр (программируемое)
P xxx	значение. В случае установки изм появляется окно:
Рп ххх	Р изм Изм. канал х
Po xxx	в котором можно при необходимости изменить установленный номер измерительного канала
	давления.

О.1 до 2.5 МПа с шагом в 0.1 МПа.

Выбор минимальной разности температур, в соответствии с которой будут регистрироваться НС в работе теплосчетчика ∆t<∆t↓. Изменяется в диапазоне от 0 до 30 °C с дискретностью 1°C.

прогр

х.х МПа

В случае установки прогр появляется окно:

в котором можно установить значение давления от

Настройка останова счета при возникновении НС (да/нет); Система: xxx Настройка отключения системы, см. п. 2.1.11 (ВКЛ/ОТКЛ).

Px

XXX

XXX

P =

При M2>M1: Q=Q1 / Q=Q1+Q2 Выбор формулы расчета потребленного количества (только тепла схемы ДЛЯ учета (Q=Q1+Q2 или Q=Q1) при M2>M1 «Открытая») (только индукционных для каналов, см. ПРИЛОЖЕНИЕ К

Датчики потока: цирк+хв Настройка места установки датчиков потока системы «ГВС циркуляция». Циркуляционная система ГВС с датчиками расхода на циркуляционном трубопроводе и трубопроводе горячей воды:

 $Q = M1(h\pi - hx) - M2(ho - hx)$

или циркуляционная система ГВС с датчиками расхода на циркуляционном трубопроводе и трубопроводе холодной воды:

 $Q = M1(h\pi - ho) + M2(h\pi - hx)$

Режим работы хххххххх Выбор режима работы системы для схем учета: «Открытая»: <u>ОСНОВНОЙ</u>, ЛЕТО1(G1=0), ЛЕТО2(G2=0) (см. ПРИЛОЖЕНИЕ K);

«Источник»: Источник, Р-Подача+Подп.

Измерит. Каналы G1: xx t: xxx p: xxx Индикация используемых системой измерительных каналов теплосчетчика (коррекция недоступна). В случае использования программируемых значений вместо соответствующего канала отображается буква «п».

Сервис

Сервис

Обнуление архива данных и (или) интеграторов прибора. Для обнуления архива и (или) интеграторов нужно при помощи кнопки «ввод» зайти в соответствующее меню:

Очистить архив и интеграторы Очистить архив

и два раза нажать кнопку «служебная»

Температура СРU хх °C Температура центрального теплосчетчика в **°C**.

процессора

7.4.3 Порядок перехода между окнами в режиме «Настройки» для каждой схемы приведен на рис. Д.1-Д.11, ПРИЛОЖЕНИЕ Д.

7.4.4 Для выхода из режима работы теплосчетчика **«Настройки»** необходимо, находясь в любом меню, нажать кнопку **«выход»**.

7.5 Описание режима «Поверка»

7.5.1 Для входа в режим работы теплосчетчика «Поверка измерительных каналов» (поверка каналов измерения расхода G1 и G2), необходимо войти в режим «Настройки», затем при помощи кнопок **«влево»** или **«вправо»** перейти к окну:

Поверка изм. каналов

и нажать кнопку «вход», при этом появится окно:

G1=xxx.xxxxx m³/4 G2=xxx.xxxxx m³/4

Для начала наблюдения необходимо подать сигнал «старт» (замкнуть контакты XP2, см. рис. ПВ.1, ПРИЛОЖЕНИЕ В), при этом экран замигает, и на нем будет индицироваться средний расход за интервал наблюдения. Для остановки счета необходимо разомкнуть контакты XP2. При начале повторного наблюдения предыдущие показания обнуляются автоматически.

Для выхода из режима «Поверка измерительных каналов» необходимо нажать кнопку **«выход»**.

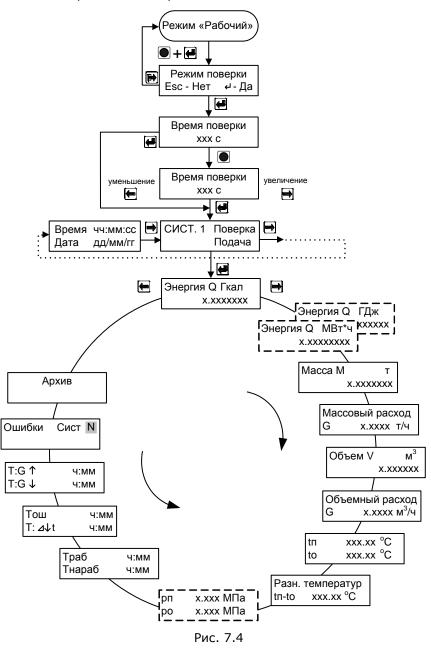
7.5.2 Для входа в режим работы теплосчетчика «Поверка» (поверка измерительного канала количества теплоты) необходимо, находясь в любом меню режима «Рабочий», одновременно нажать кнопки «служебная» и «вход». Для выхода из режима поверки необходимо, находясь в любом меню режима «Поверка», одновременно нажать кнопки «служебная» и «выход». Порядок перехода между окнами режима «Поверка» изображен на рис. 7.4.

ВНИМАНИЕ! При входе в меню (см. рис. 7.4):

СИСТ. 1 Поверка Подача

архив статистических данных и интеграторы обнуляются.

Примечания:


- Время поверки (однократного наблюдения) это интервал времени между началом («стартом») и окончанием («стопом») счета. Время поверки устанавливается в диапазоне от 60 до 600с с шагом в 12с. При счете экран времени поверки мигает, по окончании счета – останавливается;
- 2. Схема меню режима «Поверка» аналогична режиму «Рабочий»;
- 3. В режиме «Поверка» увеличено число значащих разрядов после запятой;

- 4. Для повтора измерения необходимо **одновременно** нажать кнопки **«служебная» и «вход»**. Счет интеграторов при каждом следующем измерении начинается с «нуля».
- 5. Конфигурация схем учета, автоматически устанавливающаяся при входе в режим «Поверка» в зависимости от исполнения теплосчетчика, приведена в таблице 7.1.

Таблица 7.1

Исполнение	Система 1	Система 2	Система 3	Система 4
T9M-104-4	Подача	Подача	Подача	Расходомер
T9M-104-3	Подача	Подача	Подача	-
T9M-104-2	Подача	Подача	-	-

Схема меню режима «Поверка»

7.6 Описание интерфейсов теплосчётчика

- 7.6.1 Считывание хранимых во внутренней памяти теплосчетчика параметров системы теплоснабжения и статистических данных (архива) осуществляется по интерфейсу RS-232C или RS-485 при помощи программы **Stat10x** для Windows 95/98/2000/XP. Для связи теплосчётчика с ПК, адаптером переноса данных или конвертером интерфейсов (RS-232C↔RS-485) используются сигналы RXD, TXD и GND.
- 7.6.2 В случае, когда теплосчетчик поставляется с установленным переходным кабелем (см. карту заказа, ПРИЛОЖЕНИЕ А), для считывания данных по интерфейсу RS-232C в ПК необходимо подключить к переходному кабелю, изображенному на рис. 7.5, нуль-модемный кабель (см. рис. 7.6).

Переходной кабель RS-232C (ТЭМ-104 - АПД)

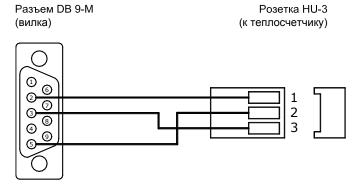


Рис. 7.5

Нуль - модемный кабель RS-232C

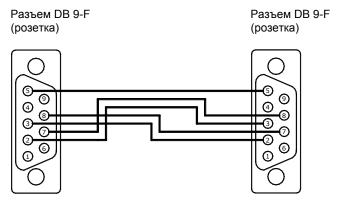
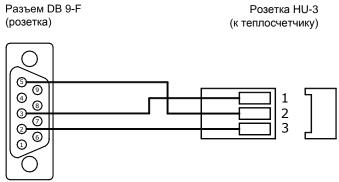
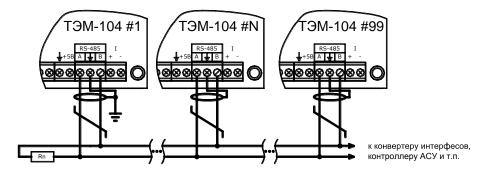


Рис. 7.6

- 7.6.3 Для считывания данных по интерфейсу RS-232C в адаптер переноса данных необходимо подключить адаптер к переходному кабелю (см. рис. 7.5).
- 7.6.4 Для прямого соединения теплосчетчик ПК следует использовать кабель, изображенный на рис. 7.7.

Прямой кабель RS-232C (ТЭМ-104 - COM)




Рис. 7.7

- 7.6.5 При считывании данных по интерфейсу RS-485 для подключения теплосчётчика к ПК дополнительно требуется конвертер, преобразующий сигналы интерфейса RS-232C в RS-485 и обратно. Рекомендуемый конвертер КИ485-01 с автоматически подстраиваемой скоростью и форматом. Для организации сети теплосчетчиков на базе последовательного интерфейса RS-485 необходимо каждому прибору присвоить уникальный сетевой адрес (см. режим «Настройки», п. 7.4.2).
- 7.6.6 Схема электрических соединений при организации сети теплосчетчиков на базе последовательного интерфейса RS-485 приведена на рис. 7.8.

<u>ВНИМАНИЕ!</u> Подключение (отключение) теплосчётчика к ПК должно производиться при выключенном теплосчётчике или ПК.

7.6.7 Порядок конфигурирования модема при подключении его к теплосчетчику описан в ПРИЛОЖЕНИИ И.

Схема электрических соединений при организации сети

- 1. Согласующее сопротивление Rn устанавливается в крайних точках линий связи и должно быть равно волновому сопротивлению кабеля.
- 2. Экран линии связи заземляется в одной из крайних точек.

Рис. 7.8

8 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

Маркировка составных частей теплосчётчика должна сохраняться в течение всего срока службы теплосчетчика.

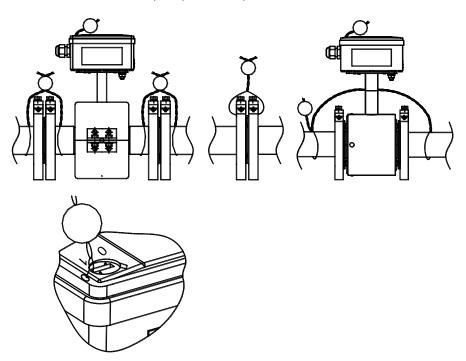
На передней панели ИВБ нанесены:

- наименование и условное обозначение теплосчетчика;
- знак утверждения типа государства, в которое поставляется данный теплосчетчик;
- диапазон измерения температуры теплоносителя в подающем и обратном трубопроводе;
- диапазон измерения разности температуры теплоносителя;
- класс теплосчетчика по СТБ ГОСТ Р 51649, СТБ EN 1434-1;
- напряжение и частота источника питания;
- потребляемая мощность;
- степень защиты.

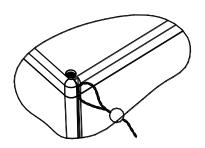
На боковой стенке ИВБ закреплена паспортная табличка, на которой указан заводской номер теплосчетчика;

Теплосчетчик является прибором коммерческого учета, в связи с этим все его составные части должны быть опломбированы.

При выпуске с предприятия-изготовителя составные части теплосчетчика должны иметь пломбу ОТК и пломбу госповерителя.


При установке, после выполнения монтажных работ, теплосчетчик может быть опломбирован представителями органов теплонадзора. При этом могут быть опломбированы следующие составные части теплосчетчика:

- ППР
- ИП;
- ТС на трубопроводе;
- корпус ИВБ.


Рекомендуемые способы пломбирования приведены на рис. 8.1.

ВНИМАНИЕ!!! В случае нарушения или несанкционированного снятия пломб предприятия-изготовителя потребителями, теплосчетчик не считается прибором коммерческого учета, а предприятие-изготовитель снимает с себя гарантийные обязательства.

Примеры пломбирования ППР

Пример пломбирования ИВБ

Пример пломбирования ТС на трубопроводе

Рис. 8.1

9 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Специального технического обслуживания в процессе эксплуатации теплосчетчик не требует.

Техническое обслуживание составных частей теплосчетчика производится в соответствии с их эксплуатационной документацией.

Рекомендуется проводить периодический визуальный осмотр с целью контроля работоспособности теплосчетчика, соблюдения условий эксплуатации, отсутствия механических повреждений составных частей прибора и наличия пломб.

При наличии в теплоносителе взвесей и возможности выпадения осадка, трубу ППР необходимо периодически промывать с целью его устранения.

Перед отправкой прибора на поверку или ремонт необходимо после демонтажа очистить внутренний канал ППР от отложений, образующихся в процессе эксплуатации. Снятие отложений необходимо проводить при помощи ветоши, смоченной в воде.

Запрещается применение острых и режущих предметов для очистки внутреннего канала ППР.

По мере необходимости рекомендуется очищать составные части теплосчетчика при помощи сухой или смоченной в воде ветоши.

Замена предохранителей ИВБ теплосчетчика осуществляется в следующем порядке:

- отключить теплосчетчик от сети питания;
- отвинтить винты на верхней крышке и снять ее (вид теплосчетчика со снятой верхней крышкой приведен на рис. В.1;
- снять крышку предохранителя и извлечь его при помощи пинцета;
- установить новый предохранитель;
- установить крышку предохранителя;
- установить верхнюю крышку и закрутить винты.

Замена предохранителей ИП производится в соответствии с их эксплуатационной документацией.

10 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ УСТРАНЕНИЯ

Наименование неисправности, внешние проявления	Вероятная причина	Способ устранения
При включении отсутствует	Перегорел предохранитель сетевого питания;	Заменить предохранитель
информация на ЖКИ вычислителя	Обрыв сетевого кабеля	Заменить сетевой кабель
Отсутствует измерение расхода и тепла при движущемся теплоносителе	Не соблюдается полярность подключения выводов (сигнальных или возбуждения) между ППР и ИВБ.	Проверить соответствие подключения ППР к ИВБ (рис. В.2).
	Плохое заземление ППР или ИП	Проверить заземление
	Просачивание теплоносителя через запорную арматуру	Устранить просачивание теплоносителя
Производится отсчет объема теплоносителя при неподвижном	Газовые пузыри в теплоносителе	Принять меры по устранению газовых пузырьков в теплоносителе
теплоносителе	Наличие электрического тока в трубопроводе	Устранить источник тока
	Не заполнен теплоносителем трубопровод ППР или ИП.	Заполнить трубопровод ППР или ИП теплоносителем или выключить теплосчетчик.
Нет измерения температуры	Обрыв линии связи между ТС и ИВБ	Устранить обрыв
	Неисправен или не подключен ТС к ИВБ	Проверить правильность подключения ТС (рис. В.2).
Нет измерения давления	Обрыв линии связи между ДИД и ИВБ	Устранить обрыв
	Неисправен или не подключен ДИД к ИВБ	Проверить правильность подключения ДИД (рис. В.2).

В случае, если неисправность устранить не удалось, необходимо обратиться в сервисный центр предприятия-изготовителя с подробным описанием возникших проблем.

11 УСЛОВИЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Теплосчетчик следует хранить в сухом и вентилируемом помещении при температуре от 5 до 40°C, относительной влажности до 95% при температуре 25°C.

Измерительные преобразователи хранятся в соответствии с их эксплуатационной документацией.

Транспортирование теплосчетчика производится любым видом транспорта (авиационным – в отапливаемых герметизированных отсеках самолетов) с защитой от атмосферных осадков.

После транспортирования при отрицательных температурах вскрытие ящиков можно производить только после выдержки их в течении 24 часов в отапливаемом помещении.

При транспортировке теплосчетчики должны закрепляться во избежание падений и соударений.

12 ПОВЕРКА

Теплосчетчик подлежит обязательной государственной поверке в следующих случаях:

- первичная поверка при выпуске из производства и после ремонта;
- периодическая поверка по истечению межповерочного интервала;

Поверка теплосчетчика должна проводится в органах государственной метрологической службы или лабораториях, аккредитованных органами Госстандарта.

При сдаче теплосчётчика в ремонт, поверку паспорт должен находиться с теплосчётчиком.

Поверка теплосчетчиков ТЭМ-104 проводится в соответствии с «Теплосчетчики ТЭМ-104. Методика поверки, МРБ МП.1419-2004» с учётом извещения об изменении №4. Последовательность действий в режиме работы теплосчетчика «Поверка» описана в п. 7.5.

Межповерочный интервал теплосчетчиков при выпуске из производства – 4 года, при периодической поверке – 2 года.

При поставках теплосчетчиков на Украину межповерочный интервал – не более 2 лет.

13 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Предприятие-изготовитель гарантирует соответствие теплосчетчика требованиям ТУ РБ 100082152.001-2004 при соблюдении потребителем условий транспортировки, монтажа, эксплуатации.

Гарантии распространяются только на теплосчетчик, у которого не нарушены пломбы предприятия-изготовителя.

Теплосчетчик, у которого во время гарантийного срока будет обнаружено несоответствие своим техническим характеристикам, ремонтируется предприятием-изготовителем или заменяется другим.

В том случае, если проведение гарантийных ремонтных работ влияет на метрологические характеристики, теплосчетчик возвращается потребителю со свидетельством о поверке.

По вопросам гарантийного обслуживания следует обращаться в сервисный центр предприятия-изготовителя:

Республика Беларусь

223035 Минский район, п. Ратомка, ул. Парковая, 10

секретарь: тел./факс (017) 517-17-47, 517-17-55

отдел продаж: тел. (017) 517-17-89, тел./факс (017) 517-17-31

e-mail: info@arvas.by, web: http://www.arvas.by

сервисный центр: г. Минск, В. Хоружей, 32А

диспетчер: тел. (017) 358-23-96, факс (017) 337-10-27,

моб. +375-44-555-36-49

ремонт: тел. (017) 517-17-93

ПРИЛОЖЕНИЕ А Карта заказа теплосчетчика

Карта заказа № теплосчетчика ТЭМ-104 Заказчик:								
(наименование предприятия, адрес, телефон/факс)								
		DN ППР, мм Примечание						
1 канал (инд	укционный)			•				
2 канал (инд								
		Тип ИП	DN, MM	Примечание				
	тотно-импульсный)	PCM-05.05C						
•	тотно-импульсный)	PCM-05.05C						
Примечание измерительн комплектуе	ым (-ми) преобразова			то теплосчетчик 3 и 4 каналов не				
Количество и Количество о Переходной интерфейса Наличие исто Наличие токо Комплектаци Комплектаци Комплектаци Комплектаци Кабель подкл Кабель подкл Кабель подкл	ВСЕГО (вариант по умолчанию <u>подчеркнут</u>): Количество комплектов (пар) ТСП, длина L _{погр} (85/120/210) мм Количество одиночных ТСП, длина L _{погр} (85/120/210) мм Переходной кабель для подключения интерфейса RS-232C (ТЭМ-104 - АПД) (да/нет) Наличие источника питания ДИД (да) Наличие токового выхода 4-20 мА (да/нет) Комплектация узлом монтажным (да/нет) Комплектация комплектом монтажных частей: прокладки паронитовые, монтажные фланцы, болты, шпильки, гайки (да/нет) Комплектация прямолинейными участками (да/нет) Комплектация кабелем подключения (да/нет):							
	Схема	установки		Примечание				
Система 1	SACING	,		p.mie iaime				
Система 2								
Система 3								
Система 4								
Количество приборов шт. Примечания								
Должность, Ф.И.О. и моб. тел. заказчика								
По карте заказа на предприятии-изготовителе составляется спецификация заказа теплосчетчика. Описание спецификации приведено в паспорте на теплосчетчик APBC.746967.039.000ПС.								

ПРИЛОЖЕНИЕ Б Габаритные, установочные и присоединительные размеры

Габаритные и установочные размеры ИВБ, место нанесения клейма поверителя

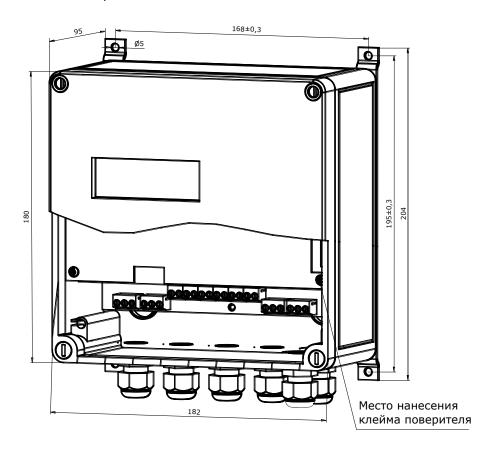
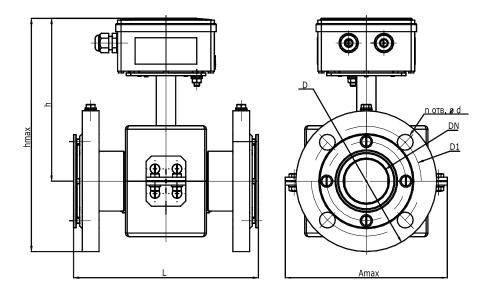
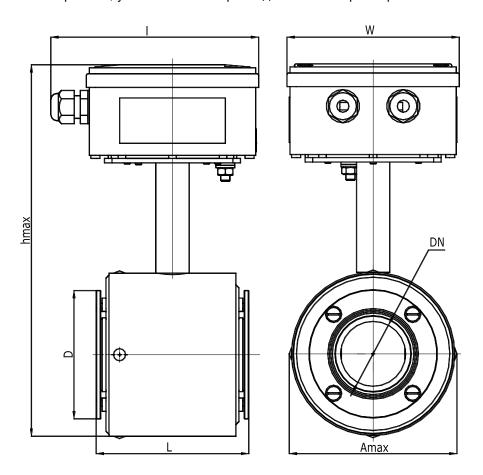



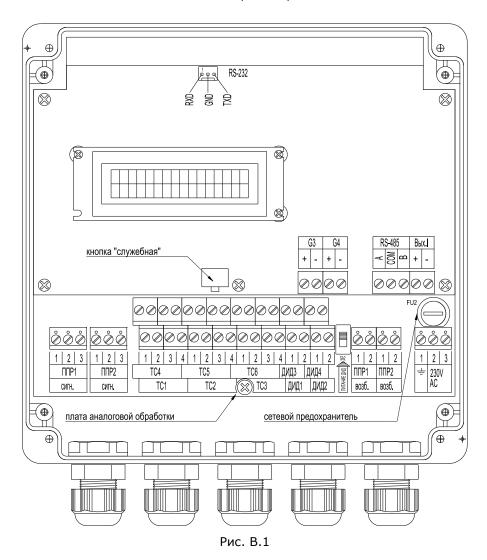
Рис.Б.1


Габаритные, установочные и присоединительные размеры ПРП

Условное		Размер, мм							
обозначение	DN	L	h _{max}	h	A _{max}	D	D ₁	d	n
ПРП-80	80	+5 242 ^{- 2}	298	200	204	195	160	18	8
ПРП-100	100	+5 230 ^{- 2}	315	200	232	230	190	22	8
ПРП-150	150	300 ^{- 4}	398	248	300	300	250	26	8

Рис.Б.2

Габаритные, установочные и присоединительные размеры ПРПМ



Условное	Размер, мм						
обозначение	DN	L	h _{max}		W	A _{max}	D
ПРПМ-15	15	101±2	246	138	114	108	85
ПРПМ-25	25	101±2	246	138	114	108	85
ПРПМ-32	32	101±2	246	138	114	108	85
ПРПМ-40	40	101±2	246	138	114	108	85
ПРПМ-50	50	101±2	246	138	114	108	85
ПРПМ-80	80	180±2	278	138	114	140	125

Рис.Б.3

ПРИЛОЖЕНИЕ В Схема электрических подключений теплосчётчика

Вид теплосчетчика со снятой верхней крышкой

Схема электрических соединений

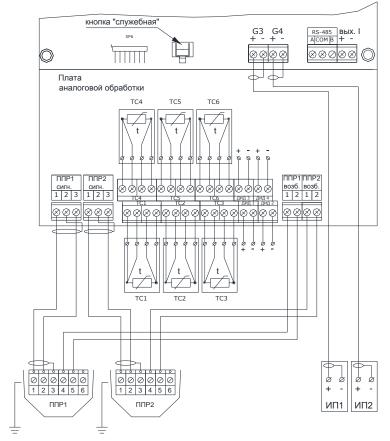


Рис. В.2

Примечания:

- 1. Подключение датчиков давления производится в соответствии со схемой внешних электрических соединений, приведенной в их эксплуатационной документации. Пример типовой схемы подключения датчика давления с токовым выходом 4-20 mA приведен на рис. В.2а;
- 2. В случае отсутствия ТС, в его клеммник следует установить перемычки (см. рис. В.2б);
- 3. В случае отсутствия ППР2, в клеммники «ППР2 сигн.» и «ППР2 возб.» следует установить перемычки (см. рис. В.2в);
- 4. Частный случай подключения ИП1 и ИП2 к каналам G3 и G4 приведен на рис. В.3 (РСМ-05.05С). При подключении ИП других типов внимательно изучите их эксплуатационную документацию.

Подключение датчиков давления

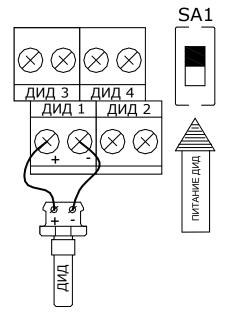


Рис В.2а

ВНИМАНИЕ!!! В теплосчётчике установлен встроенный источник питания с защитой от короткого замыкания для датчиков избыточного давления. Подключения внешнего источника питания не требуется. Для работы датчиков избыточного давления переключатель SA1 должен быть установлен в верхнее положение (питание ДИД включено).

Установка перемычек в случае отсутствия датчика температуры Установка перемычек в случае отсутствия датчика расхода (ППP2)

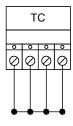


Рис. В.26

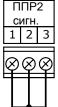
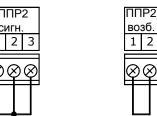



Рис. В.2в

Схема электрических соединений при подключении РСМ-05.05С



Рис. В.3

В теплосчетчике предусмотрена возможность подключения ИП как с частотным (F), так и с импульсным (N) выходным сигналом. Перед подключением необходимо правильно сконфигурировать ИП и произвести соответствующие установки в ИВБ теплосчетчика.

Установки в случае конфигурирования PCM-05.05С на частотный выходной сигнал (рекомендуется)

Установки ТЭМ-104 (см. п. 7.4)				
Установить частотный тип входов G3 и G4	Тип входов G3,G4 частотные			
Установить максимальный расход равным максимальному расходу PCM-05.05C	G3в xxx,xxx Fmax3, Гц xxxxxx			
Установить частоту Fmax3 = Fmax4 = 2000Гц	G4в xxx,xxx Fmax4, Гц xxxxxx			

Установки РСМ-05.05С (см. паспорт РСМ-05.05С)				
С помощью джамперов XT1, XT2 установить тип	джампер XT1 - OFF (снят)			
дискретного выхода – « сухой контакт »	джампер XT2 - OFF (снят)			
С помощью джампера F/N установить	джампер F/N (поле XP4)			
частотный тип выходного сигнала расходомера	- OFF (снят)			
С помощью джампера ХТ5 отключить контроль	джампер XT5 – 23			
линии выходного сигнала расходомера	джампер ХТЗ – 23			

Установки в случае конфигурирования PCM-05.05С на импульсный выходной сигнал

Установки ТЭМ-104 (см. п. 7.4)	
Установить импульсный тип входов G3 и G4	Тип входов G3,G4 импульсные
Установить максимальный расход равным максимальному расходу PCM-05.05C	G3в xxx,xxx Kv G3, л/и xxx.xx
Установить вес импульса, равный весу импульса, установленному в РСМ-05.05С	G4в xxx,xxx Kv G4, л/и xxx.xx

Установки РСМ-05.05С (см. паспорт РСМ-05.05С)				
С помощью джамперов XT1, XT2 установить тип	джампер XT1 – OFF (снят)			
дискретного выхода – « сухой контакт »	джампер XT2 – OFF (снят)			
С помощью джампера F/N установить импульсный тип выходного сигнала расходомера	джампер F/N (поле XP4) - ON (установлен)			
С помощью джампера XT5 отключить контроль линии выходного сигнала расходомера	джампер ХТ5 – 23			

ПРИЛОЖЕНИЕ Г Схемы меню режима «Рабочий»

Схема меню режима «Рабочий» для схемы учета «РАСХОДОМЕР V»

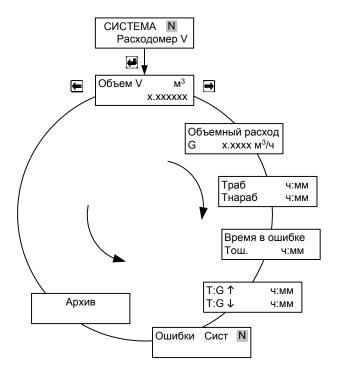


Рис. Г.1

Схема меню режима «Рабочий» для схемы учета «РАСХОДОМЕР М»

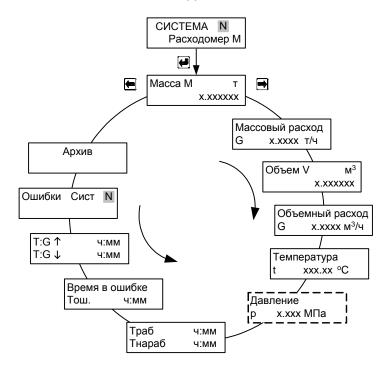
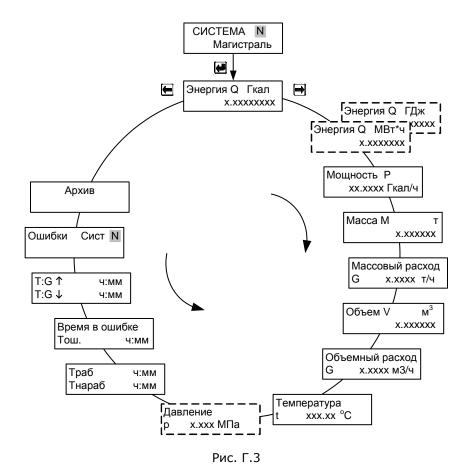



Рис. Г.2

Схема меню режима «Рабочий» для схемы учета «МАГИСТРАЛЬ»

Теплосчетчик ТЭМ-104. Руководство по эксплуатации.

Схема меню режима «Рабочий» для схем учета «ПОДАЧА» и «ОБРАТКА»

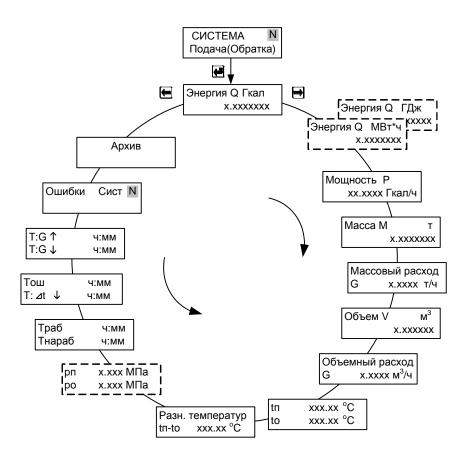


Рис. Г.4

Схема меню режима «Рабочий» для схемы учета «ТУПИКОВАЯ ГВС»

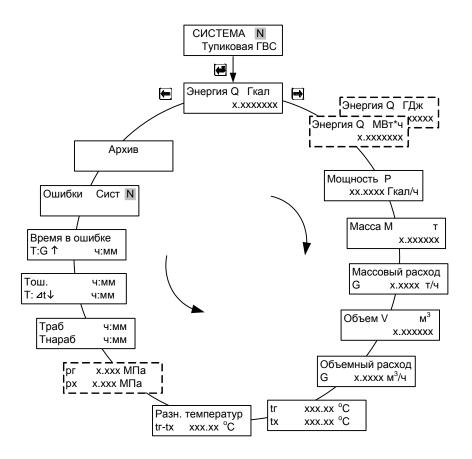


Рис. Г.5

Схема меню режима «Рабочий» для схемы учета «ПОДПИТКА НСО» и «ПОДПИТКА ИСТОЧНИКА»

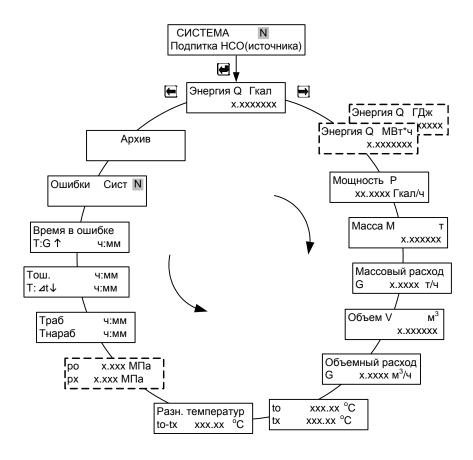


Рис. Г.6

Схема меню режима «Рабочий» для схемы учета «ПОДАЧА+Р»

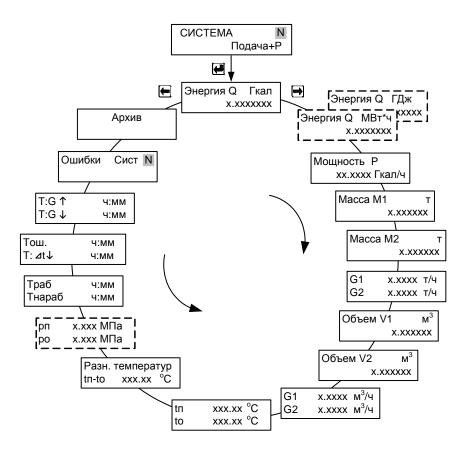


Рис. Г.7

Схема меню режима «Рабочий» для схемы учета «ОТКРЫТАЯ»

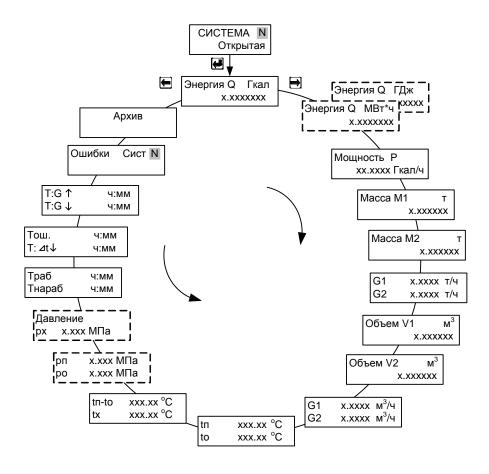


Рис. Г.8

Схема меню режима «Рабочий» для схемы учета «ГВС ЦИРКУЛЯЦИЯ»

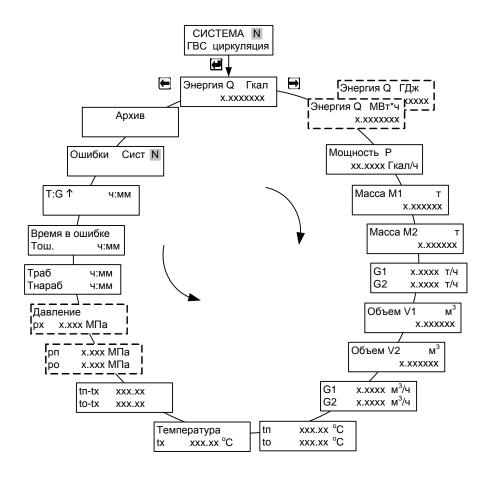


Рис. Г.9

Схема меню режима «Рабочий» для схемы учета «ИСТОЧНИК», режим работы – «Источник»

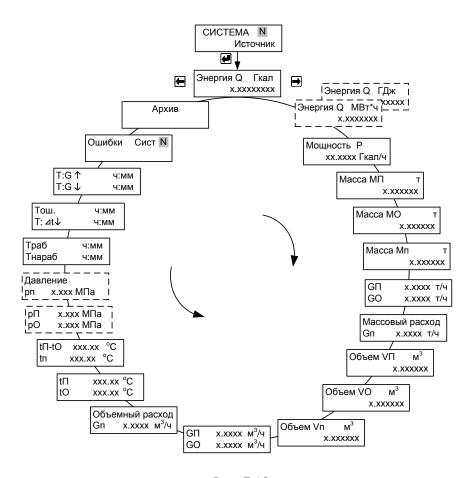


Рис. Г.10

Схема меню режима «Рабочий» для схемы учета «ИСТОЧНИК», режим работы – «Р-Подача+Подп.»

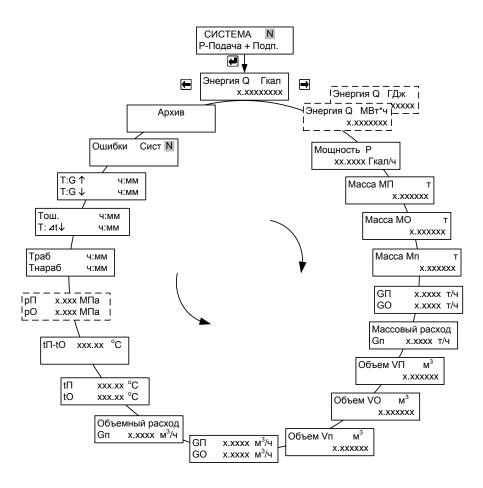


Рис. Г.11

ПРИЛОЖЕНИЕ Д Схемы меню режима «Настройки»

Схема меню «Настройки измерительных каналов» режима «Настройки»

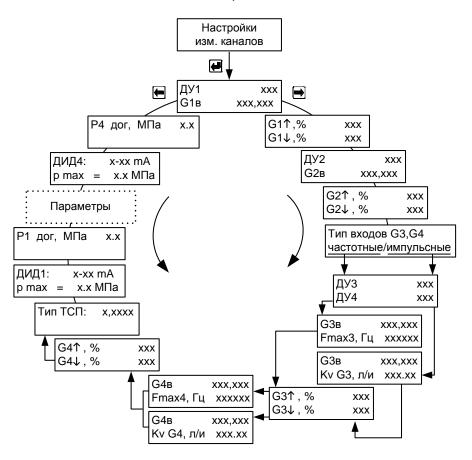


Рис. Д.1

Схема меню режима «Настройки» для схемы учета «РАСХОДОМЕР V»

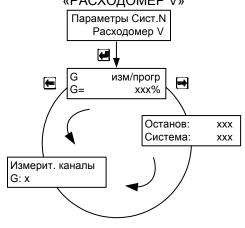


Рис. Д.2

Схема меню режима «Настройки» для схемы учета «РАСХОДОМЕР М»

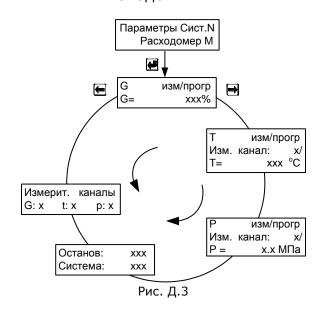


Схема меню режима «Рабочий» для схемы учета «МАГИСТРАЛЬ»

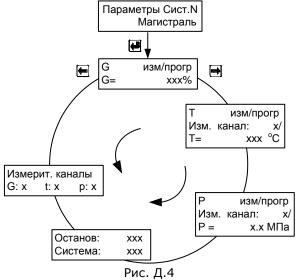
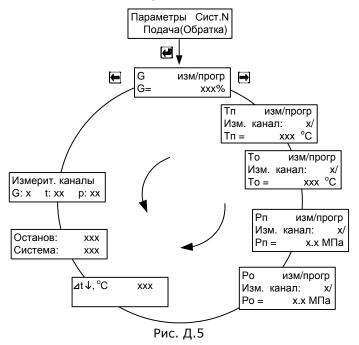
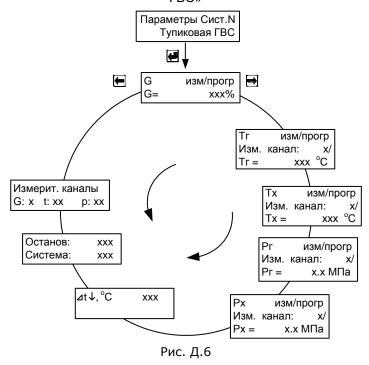




Схема меню режима «Рабочий» для схемы учета «ПОДАЧА» и «ОБРАТКА»

Схема меню режима «Настройки» для схемы учета «ТУПИКОВАЯ ГВС»

Схема меню режима «Настройки» для схемы учета «ПОДПИТКА НСО» и «ПОДПИТКА ИСТОЧНИКА»

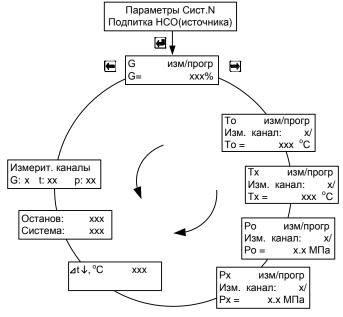


Рис. Д.7

Схема меню режима «Настройки» для схемы учета «ПОДАЧА+Р»

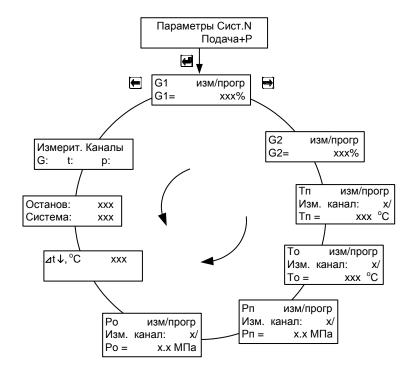


Рис. Д.8

Схема меню режима «Настройки» для схемы учета «ОТКРЫТАЯ»

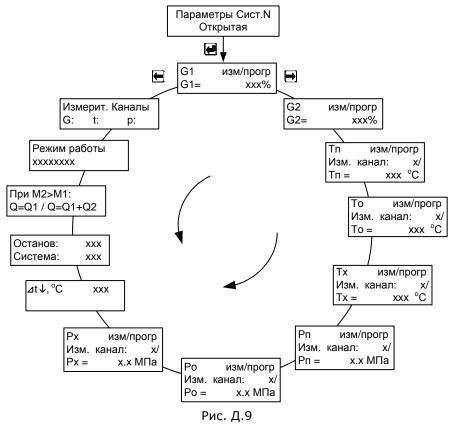


Схема меню режима «Настройки» для схемы учета «ГВС ЦИРКУЛЯЦИЯ»

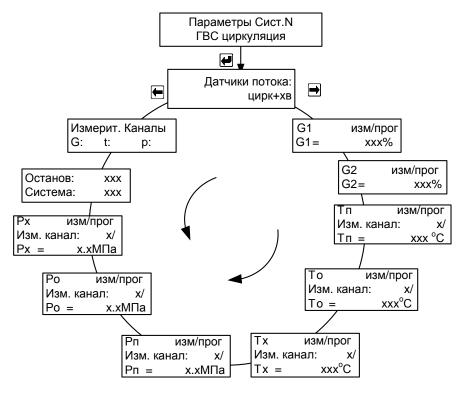
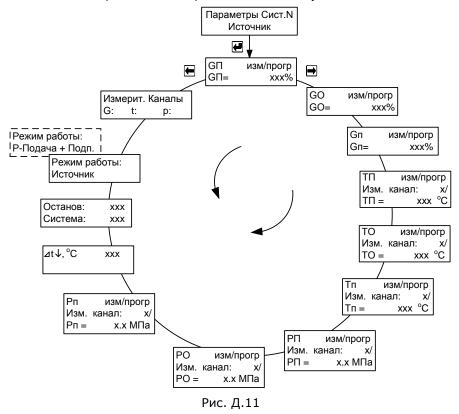



Рис. Д.10

Схема меню режима «Настройки» для схемы учета «ИСТОЧНИК»

ВНИМАНИЕ!!! При режиме работы Р-Подача+Подп. каналы измерения температуры и давления в трубопроводе подпитки не используются.

ПРИЛОЖЕНИЕ Е Порядок работы интеграторов теплосчетчика

Таблица Е.1

ета при нии НС	Возможные комбинации НС и ТН, возникающие в системе учета				Порядок работы интеграторов прибора							ТН циеся	
Останов счета г возникновении и (или) ТН	тн	G↓	G↑	Δt↓	Q, M, V	Траб	Тнар	Ттн	T _G ↓	T _{G↑}	T∆t↓	Индикация на ЖКИ ИВБ	Коды НС и ТН фиксирующиеся в архиве
	нет	нет	нет	нет	+	+	+	-	•	•	-	-	-
	нет	нет	есть	нет	-	+	-	-	-	+	-	G↑	2
	нет	есть	есть	нет	-	+	-	-	+	-	-	G↓, G↑	1,2
	нет	есть	есть	есть	-	+	-	-	+	-	-	G ↓, G ↑, Δt↓	1,2,3
	нет	нет	нет	есть	•	+	-		ı	ı	+	Δt↓	3
	нет	есть	нет	есть	-	+	-	-	+	•	-	G↓, ∆t↓	1,3
	нет	есть	нет	нет	-	+	-		+	-	-	G→	1
	нет	нет	есть	есть	-	+	-		-	+	-	G↑, ∆t↓	2,3
Да													
	есть	нет	нет	нет	-	+	-	+	-	-	-	T.H.	4
	есть	нет	есть	нет	-	+	-	+	-	-	-	T.H.	4
	есть	есть	есть	нет	-	+	-	+	-	-	-	T.H.	4
	есть	есть	есть	есть	-	+	-	+	-	-	-	T.H.	4
	есть	нет	нет	есть	-	+	-	+	-	-	-	T.H.	4
	есть	есть	нет	есть	•	+	-	+	ı	ı	-	T.H.	4
	есть	есть	нет	нет	•	+	-	+	ı	ı	-	T.H.	4
	есть	нет	есть	есть	•	+	-	+	ı	ı	-	T.H.	4
	нет	нет	нет	нет	+	+	+	-	-	-	-	-	-
	нет	нет	есть	нет	+	+	+	-	-	-	-	G↑	2
	нет	есть	есть	нет	+	+	+	-	-	-	-	G↓, G↑	1,2
	нет	есть	есть	есть	+	+	+	-	-	-	-	G↓, G↑, Δt↓	1,2,3
	нет	нет	нет	есть	+	+	+	-	-	-	-	Δt↓	3
	нет	есть	нет	есть	+	+	+	-	-	-	-	G↓, ∆t↓	1,3
	нет	есть	нет	нет	+	+	+	-	-	-	-	G↓	1
	нет	нет	есть	есть	+	+	+	-	-	-	-	G↑, Δt↓	2,3
Нет												Í	,
	есть	нет	нет	нет	-	+	-	+	-	-	-	T.H.	4
	есть	нет	есть	нет	-	+	-	+	-	-	-	T.H.	4
	есть	есть	есть	нет	-	+	-	+	-	-	-	T.H.	4
	есть	есть	есть	есть	-	+	-	+	-	-	-	T.H.	4
	есть	нет	нет	есть	-	+	-	+	-	-	-	T.H.	4
	есть	есть	нет	есть	-	+	-	+	-	-	-	T.H.	4
	есть	есть	нет	нет	-	+	-	+	-	-	-	T.H.	4
	есть	нет	есть	есть	-	+	-	+	-	-	-	T.H.	4

Примечания:

- «+» интегратор ведет счет с накоплением;
- «-» интегратор остановлен;
- при отключении питания интегратор Траб останавливается;
- при включении/отключении питания в архиве данных фиксируется код ${\bf 4}$ в часе, когда питание отключили и в часе, когда питание включили.

ПРИЛОЖЕНИЕ И Настройка модема

Перед тем, как подключать модем к теплосчетчику, его необходимо настроить. Для этого модем подключается к ПК и запускается программа «Настройка модема» (исполняемый файл «ModemConfig.exe»). Внешний вид программы приведён на рис. И1.

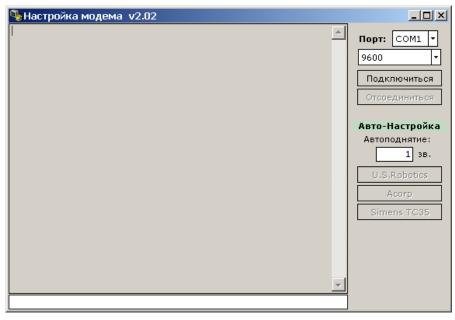


рис. И1

Для подключения необходимо указать СОМ порт, к которому подключен настраиваемый модем, и нажать кнопку «Подключиться».

В программе предусмотрена опция автоматического конфигурирования «Автоматическая настройка» (кнопки «U.S.Robotics», «Acorp», «Siemens TC35») для различных производителей модемов. В режиме автоматической настройки выполняются следующие АТ команды:

AT&FO – Загрузка стандартного профиля 0;

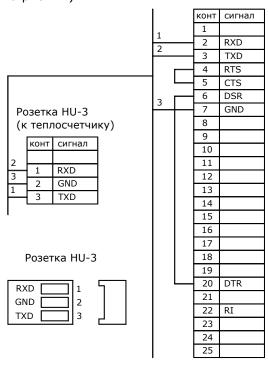
ATS0=x – Установка режима автоподнятия трубки;

ATEO – Отключение локального эха в командном режиме;

ATF1 - Отключение эха в режиме передачи данных;

АТҮО – Выбор профиля 0 как по умолчанию;

AT&W0 – Запись нового профиля в энергонезависимую память.


Внимание: Набор АТ команд у разных производителей может отличаться в связи с отсутствием общего стандарта. Данный набор команд приведён для модемов, производителем которых является компания **U.S.Robotics**. При использовании модемов других производителей необходимо убедиться в соответствии команд модема приведённому набору команд. Если какие-то из команд отличаются, то конфигурирование требуется произвести в ручном режиме.

Для ввода команды в ручном режиме необходимо подключиться к модему, набрать ее в поле команд (см рис. И1) и нажать клавишу «Enter».

В программе также можно указать число звонков до автоматического ответа (поле ввода **«Автоподнятие»**). После выполнения конфигурирования необходимо нажать кнопку **«Отсоединиться»** и закрыть программу.

После конфигурирования модема необходимо установить в теплосчетчике скорость обмена 9600 для интерфейса RS-232.

Модем подключается к теплосчетчику кабелем с разводкой, приведенной на рис. И2).

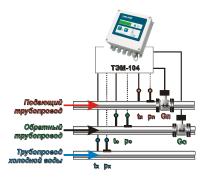

Вилка DB25-M

Рис. И2

ПРИЛОЖЕНИЕ К Дополнительные возможности схемы «ОТКРЫТАЯ»

В схеме «ОТКРЫТАЯ» реализовано несколько дополнительных возможностей, позволяющих вести корректный учет в нетипичных случаях:

Измерение реверсивного расхода

HC Δt ↓ при реверсе не регистрируется

Схема «ОТКРЫТАЯ» позволяет вести учет тепловой энергии как при нормативных нагрузках в системе, так и в часы пиковых нагрузок (большой разбор теплоносителя), когда направление движения теплоносителя в обратном трубопроводе может измениться на реверсивное (к потребителю). При этом не требуется переустанавливать датчик расхода на обратном трубопроводе*.

Изменение направления потока регистрируется прибором автоматически (мгновенный расход в обратном трубопроводе начинает индицироваться со знаком «-»).

Особенностью работы при реверсе является то, что масса (объем) теплоносителя, протекшего по подающему и обратному трубопроводу суммируются в одном интеграторе $\mathbf{M1}$. Интегратор $\mathbf{M2}$ в этом случае остановлен (см. таблицу $\mathbf{K1}$).

Таблина К1

Направление потока в обратном трубопроводе	Интегратор М1 (масса теплоносителя, отпущенного потребителю)	Интегратор M2 (масса теплоносителя, возвращенного потребителем)
	M4 M-	M2 M-
от потребителя	M1=Mn	M2=Mo

Примечания:

M1 – масса теплоносителя, отпущенного потребителю;

M2 – масса теплоносителя, возвращенного потребителем;

Мп – масса теплоносителя, протекшего по подающему трубопроводу;

Мо – масса теплоносителя, протекшего по обратному трубопроводу.

^{*} Измерение реверсивного расхода возможно только в индукционном канале 2.

Коррекция расчета тепловой энергии при М1<М2

Если в системе исключен подмес, то всегда должно выполняться условие: $M1 \ge M2$.

Однако, каждый из датчиков измеряет расход с погрешностью, пределы которой нормируются. В связи с этим при отсутствии водоразбора ($\mathbf{M1} = \mathbf{M2}$) возможна ситуация, когда измеренное значение массы $\mathbf{M2}$ превысит $\mathbf{M1}$, т.е. $\mathbf{M1} < \mathbf{M2}$.

В этом случае значение **Q2** в формуле расчета потребленной тепловой энергии принимает отрицательные значения:

$$Q = Q1+Q2$$
 [Q1 = Mn(hn-ho); Q2 = (Mn-Mo)(ho-hx)]

В схеме «ОТКРЫТАЯ» предусмотрена возможность **до** постановки на коммерческий учет выбрать формулу для расчета \mathbf{Q} при $\mathbf{M1} < \mathbf{M2}$: $\mathbf{Q} = \mathbf{Q1} + \mathbf{Q2}$ или $\mathbf{Q} = \mathbf{Q1}$.

Q = Q1 (Q2 c oтрицательными значениями не учитывается) или

Q = Q1 + Q2 (Q2учитывается всегда).

<u>ПРИМЕР.</u> По показаниям теплосчетчика получены следующие значения:

приращение $M1=100~\tau$ за один час, среднечасовое значение температуры в подающем трубопроводе $t\pi=90~^{\circ}C$, давление $p\pi=0,9~M\Pi a;$

приращение $M2=101\ T$ за один час, среднечасовое значение температуры в обратном трубопроводе $to=60\ ^{\circ}C$, давление $p\pi=0.5\ M\Pi a$;

среднечасовое значение температуры в трубопроводе XB to=10 °C, давление $p\pi=0.5$ МПа.

Значения энтальпий:

$$h\pi = 90,20$$
 ккал/кг; $ho = 60,09$ ккал/кг; $hx = 10,17$ ккал/кг.

Значения потребленной энергии:

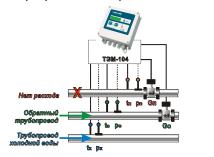
$$Q1 = M\pi(h\pi-ho) = 100(90,20 - 60,09) = 3,011$$
 (Гкал);

$$Q2 = (M\pi-Mo)(ho-hx) = (100-101)(60,09 - 10,17) = -0,05 (Гкал).$$

при
$$Q = Q1$$
 при $Q = Q1+Q2$

$$Q = 3,011$$
 Гкал $Q = 3,011 - 0,05 = 2,961$ Гкал

Если **M1≥M2**, то расчет <u>всегда</u> ведется по формуле **Q=Q1+Q2** (независимо от установленной формулы).


Летние режимы работы

В случае, когда горячая вода подается потребителю непосредственно из системы отопления (по тупиковой схеме) и в период отключения отопления (весна-осень) один из трубопроводов не используется, для учета могут быть использованы режимы **ЛЕТО1** и **ЛЕТО2**:

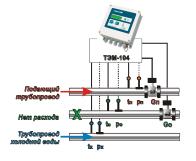
ЛЕТО1. Отсутствует расход в подающем трубопроводе. Реверсивное движение теплоносителя в обратном трубопроводе (к потребителю).

Позволяет вести учет тепловой энергии системы ГВС при отключенной системе отопления (летний период). Датчик расхода на обратном трубопроводе переустанавливать не требуется. При этом на подающем трубопроводе могут проводиться ремонтные и профилактические работы.

Показания датчиков, установленных на подающем трубопроводе, при расчете потребленной тепловой энергии не учитываются.

Формула расчета потребленной энергии:

Q = |Mo|(ho-hx)

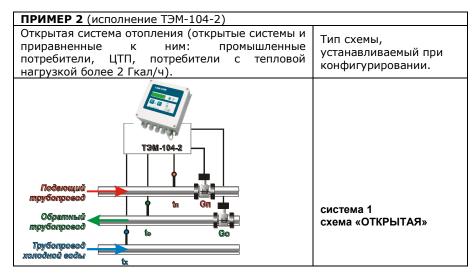

M1 = |Mo|

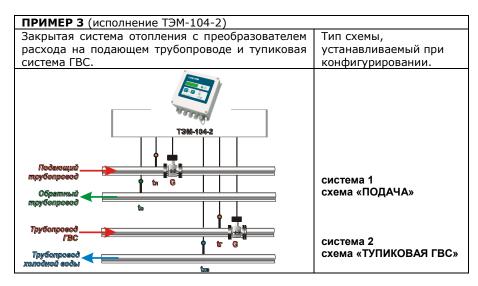
(счет ведется только в том случае, когда Мо<0)

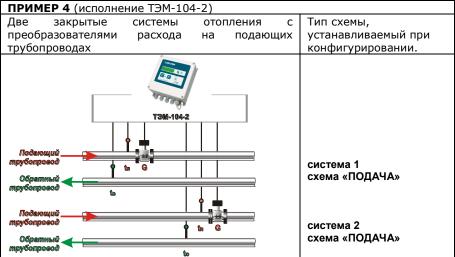
ЛЕТО2. Отсутствует расход в обратном трубопроводе.

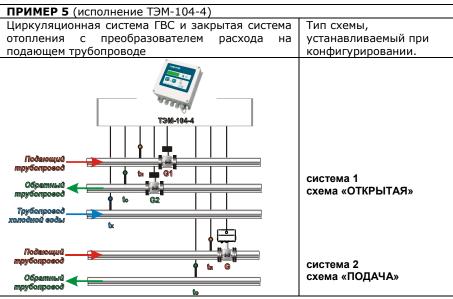
Позволяет вести учет тепловой энергии системы ГВС по подающему трубопроводу при отключенной системе отопления (летний период). При этом на обратном трубопроводе могут проводиться ремонтные и профилактические работы.

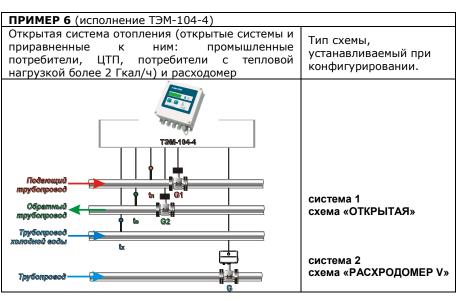
Показания датчиков, установленных на обратном трубопроводе, при расчете потребленной тепловой энергии не учитываются.

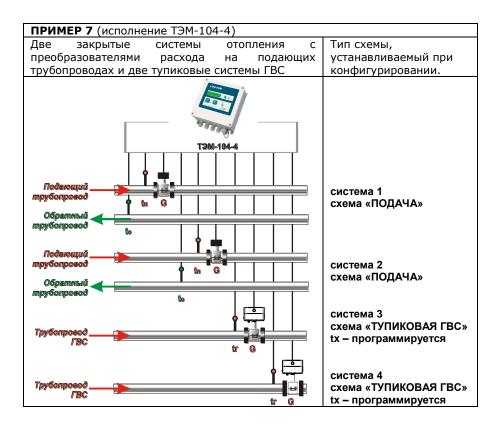

Формула расчета потребленной энергии:

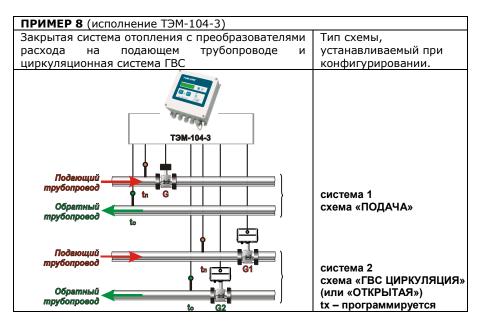

 $Q = M\pi(h\pi-hx)$


 $M1 = M\pi$


ПРИЛОЖЕНИЕ Л Наиболее распространенные варианты использования ТЭМ-104


ПРИМЕР 1 (исполнение ТЭМ-104-1)					
Закрытая система отопления с преобразователем расхода на подающем трубопроводе	Тип схемы, устанавливаемый при конфигурировании.				
Подающий трубопровод tn G	система 1 схема «ПОДАЧА»				





- nnp	
- измерительный преобразователь	
(например, PCM-05.05C) из числа приведенных в таблице 2.6.	