SPECIFICATIONS

PXIe-5646R-G

Reconfigurable 6 GHz Vector Signal Generator with 200 MHz Bandwidth

Contents

Definitions	2
Conditions	2
VSG Frequency	3
Frequency Settling Time	
Internal Frequency Reference.	4
Frequency Reference Input (REF IN)	4
Frequency Reference/Sample Clock Output (REF OUT)	4
Spectral Purity	5
RF Output	6
Power Range	6
Amplitude Settling Time	7
Output Power Level Accuracy	7
Frequency Response	10
Output Noise Density	13
Spurious Responses	13
Third-Order Output Intermodulation	15
LO Residual Power	16
Residual Sideband Image	19
Error Vector Magnitude (EVM)	21
VSG EVM	21
Application-Specific Modulation Quality	22
WLAN 802.11ac	
WLAN 802.11n	24
WLAN 802.11a/g/j/p	24
WLAN 802.11g	24
WLAN 802.11b/g	25
LTE	25
WCDMA	26
Baseband Characteristics	26
Onboard FPGA	26
Onboard DRAM	27
Onboard SRAM	27

Front Panel I/O	27
RF OUT	27
CAL IN, CAL OUT	28
LO OUT (RF OUT 0)	28
LO IN (RF OUT 0)	28
REF IN	28
REF OUT	29
PFI 0	29
DIGITAL I/O	29
Power Requirements	31
Calibration	32
Physical Characteristics.	32
Environment.	32
Operating Environment	32
Storage Environment	32
Shock and Vibration.	33
Compliance and Certifications.	
Safety	33
Electromagnetic Compatibility	33
CE Compliance	34
Online Product Certification.	34
Environmental Management	34

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

The following characteristic specifications describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- *Typical* specifications describe the performance met by a majority of models.
- Typical-95 specifications describe the performance met by 95% ($\approx 2\sigma$) of models with a 95% confidence.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Within the specifications, self-calibration °C refers to the recorded device temperature of the last successful self-calibration.

Specifications are *Warranted* unless otherwise noted.

Conditions

Specifications are valid under the following conditions unless otherwise noted.

- 30 minutes warm-up time.
- Calibration cycle is maintained

- Chassis fan speed is set to High. In addition, NI recommends using slot blockers and EMC filler panels in empty module slots to minimize temperature drift.
- Calibration IP is used properly during the creation of custom FPGA bitfiles.
- Calibration Interconnect cable remains connected between CAL IN and CAL OUT front panel connectors.
- The cable connecting CAL IN to CAL OUT has not been removed or tampered with.

Reference Clock source: Internal

RF OUT power level: 0 dBm

LO tuning mode: Fractional

LO PLL loop bandwidth: Medium

LO step size: 200 kHz LO frequency: 2.4 GHz LO source: Internal

VSG Frequency

Frequency range

65 MHz to 6 GHz

Table 1. PXIe-5646R-G Bandwidth

Center Frequency	Instantaneous Bandwidth	
≤109 MHz	20 MHz	
>109 MHz to <200 MHz	80 MHz	
200 MHz to 6 GHz	200 MHz	

Tuning resolution ¹	888 nHz
LO step size	
Fractional mode	Programmable step size, 200 kHz default
Integer mode	2 MHz, 5 MHz, 10 MHz, 25 MHz

¹ Tuning resolution combines LO step size capability and frequency shift DSP implemented on the FPGA.

Frequency Settling Time

Table 2. Maximum Frequency Settling Time

	Maximum Time (ms)			
Settling Time	Low Loop Medium Loop High Loop Bandwidth Bandwidth ² (default) Bandwidth			
≤1 × 10 ⁻⁶ of final frequency	1.1	0.95	0.38	
≤0.1 × 10 ⁻⁶ of final frequency	1.2	1.05	0.4	

The default medium loop bandwidth refers to a setting that adjusts PLL to balance tuning speed and phase noise, and it does not necessarily result in loop bandwidth between low and high.

This specification includes only frequency settling and excludes any residual amplitude settling.

Internal Frequency Reference

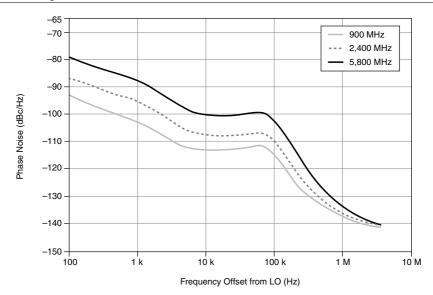
Initial adjustment accuracy	$\pm 200 \times 10^{-9}$
Temperature stability	$\pm 1 \times 10^{-6}$, maximum
Aging	$\pm 1 \times 10^{-6}$ per year, maximum
Accuracy	Initial adjustment accuracy \pm Aging \pm
	Temperature stability

Frequency Reference Input (REF IN)

Refer to the *REF IN* section.

Frequency Reference/Sample Clock Output (REF OUT)

Refer to the *REF OUT* section.


² Medium loop bandwidth is available only in fractional mode.

Spectral Purity

Table 3. Single Sideband Phase Noise

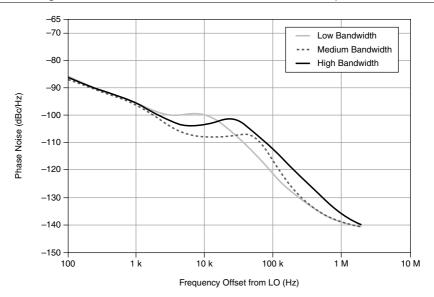

	Phase Noise (dBc/Hz), 20 kHz Offset (Single Sideband)			
Frequency	Low Loop Bandwidth	Medium Loop Bandwidth	High Loop Bandwidth	
<3 GHz	-99	-99	-94	
3 GHz to 4 GHz	-91	-93	-91	
>4 GHz to 6 GHz	-93	-93	-87	

Figure 1. Measured Phase Noise³ at 900 MHz, 2.4 GHz, and 5.8 GHz

³ Conditions: Measured Port: LO OUT; Reference Clock: internal; medium loop bandwidth.

Figure 2. Measured Phase Noise⁴ at 2.4 GHz versus Loop Bandwidth

RF Output

Power Range

Table 4. Power Range

Output Type	Frequency	Power Range		
CW	<4 GHz	Noise floor to +10 dBm, average power ⁵	Noise floor to +15 dBm, average power, nominal	
	≥4 GHz	Noise floor to +7 dBm, average power ⁵	Noise floor to +12 dBm, average power, nominal	

⁴ Conditions: Measured Port: LO OUT; Reference Clock: internal.

⁵ Higher output is uncalibrated and may be compressed.

Table 4. Power Range (Continued)

Output Type	Frequency	Power Range		
Modulated ⁶	<4 GHz	Noise floor to +6 dBm, average power	_	
	≥4 GHz	Noise floor to +3 dBm, average power	_	

Output attenuator resolution	2 dB, nominal	
Digital attenuation resolution ⁷	0.1 dB or better	

Amplitude Settling Time

0.1 dB of final value ⁸	50 μs
0.5 dB of final value ⁹ , with LO retuned	300 μs

Output Power Level Accuracy

Table 5. Output Power Level Accuracy (dB)

	15 °C to 35 °C		0 °C to 55 °C	
Center Frequency	Self- Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C	Self- Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
65 MHz to <109 MHz	_	±0.70	_	±0.90
	_	± 0.55 (95th percentile, $\approx 2\sigma$)	_	± 0.65 (95th percentile, $\approx 2\sigma$)
	±0.26, typical	±0.40, typical	±0.36, typical	±0.50, typical

⁶ Up to 12 dB crest factor, based on 3GPP LTE uplink requirements.

⁷ Average output power \geq -100 dBm.

⁸ Constant LO frequency, varying RF output power range. Power levels ≤ 0 dBm. 175 μs for power levels > 0 dBm.

⁹ LO tuning across harmonic filter bands.

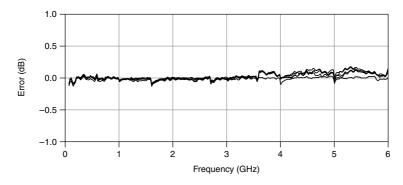
Table 5. Output Power Level Accuracy (dB) (Continued)

	15 °C 1	to 35 °C	0 °C t	o 55 °C
Center Frequency	Self- Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C	Self- Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
109 MHz to		±0.75		±0.90
<270 MHz ¹⁰		± 0.60 (95th percentile; $\approx 2\sigma$)		± 0.70 (95th percentile; $\approx 2\sigma$)
	±0.26, typical	±0.45, typical	±0.36, typical	±0.55, typical
270 MHz to	_	±0.70	_	±0.90
<375 MHz	_	± 0.55 (95th percentile, $\approx 2\sigma$)	_	± 0.65 (95th percentile, $\approx 2\sigma$)
	±0.26, typical	±0.40, typical	±0.36, typical	±0.50, typical
375 MHz to	_	±0.75	_	±0.90
<2 GHz	_	± 0.55 (95th percentile, $\approx 2\sigma$)	_	± 0.65 (95th percentile, $\approx 2\sigma$)
	±0.26, typical	±0.40, typical	±0.36, typical	±0.50, typical
2 GHz to <4 GHz	_	±0.75	_	±0.90
	_	± 0.60 (95th percentile, $\approx 2\sigma$)	_	$\pm 0.70 \text{ (95th percentile, } \approx 2\sigma)$
	±0.26, typical	±0.40, typical	±0.36, typical	±0.50, typical

Harmonic suppression is reduced in this frequency range. As a result, offset errors may occur depending on whether you are using a true RMS device, such as a power meter.

Table 5. Output Power Level Accuracy (dB) (Continued)

	15 °C to 35 °C		0 °C to 55 °C	
Center Frequency	Self- Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C	Self- Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
4 GHz to 6 GHz	_	±1.00	_	±1.15
	_	$\pm 0.80 \text{ (95th percentile, } \approx 2\sigma)$	_	± 0.90 (95th percentile, $\approx 2\sigma$)
	±0.28, typical	±0.40, typical	±0.38, typical	±0.60, typical


Conditions: CW average power -70 dBm to +10 dBm.

For power <-70 dBm, highly accurate generation can be achieved using digital attenuation, which relies on DAC linearity.

The absolute amplitude accuracy is measured at 3.75 MHz offset from the configured center frequency. The absolute amplitude accuracy measurements are made after the PXIe-5646R-G has settled

This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

Figure 3. Relative Power Accuracy, -40 dBm to 10 dBm, 10 dB Steps, Typical

Frequency Response

Table 6. VSG Frequency Response (dB) (Amplitude, Equalized)

Output Frequency	Bandwidth	Self-Calibration °C ± 5 °C
≤109 MHz	20 MHz	±0.9 dB
>109 MHz to <200 MHz	40 MHz	±0.5 dB
	80 MHz	±0.5 dB, typical
		±0.9 dB
≥200 MHz to 6 GHz	80 MHz	±0.5 dB
	200 MHz	±0.5 dB, typical
		±1.1 dB

Conditions: Reference level -30 dBm to +30 dBm. This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

Frequency response represents the relative flatness within a specified instantaneous bandwidth. Frequency response specifications are valid within any given frequency range and not the LO frequency itself.

Figure 4. Measured 80 MHz Frequency Response, 0 dBm Output Power Level, Equalized

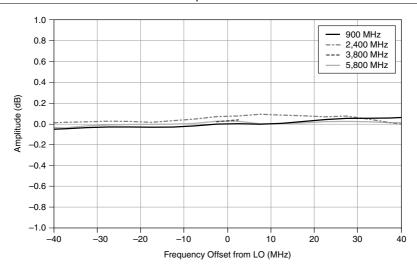


Figure 5. Measured 80 MHz Frequency Response, -50 dBm Output Power Level, Equalized

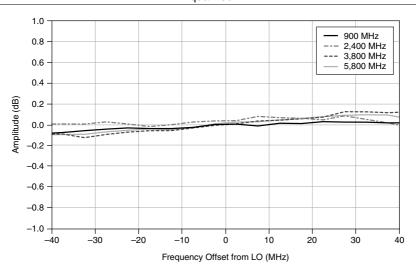


Figure 6. Measured 200 MHz Frequency Response, 0 dBm Output Power Level, Equalized

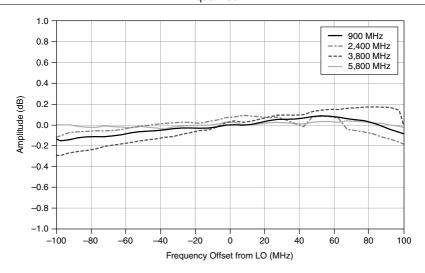
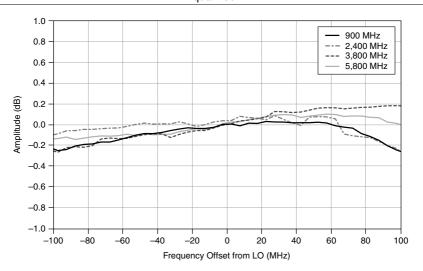



Figure 7. Measured 200 MHz Frequency Response, -50 dBm Output Power Level, Equalized

Output Noise Density

Table 7. Average Output Noise Level (dBm/Hz)

		Power Setting		
Center Frequency	-30 dBm	0 dBm	10 dBm	
65 MHz to 500 MHz	_	_	_	
	-168, typical	-150, typical	-130, typical	
>500 MHz to 1 GHz	_	_	_	
	-168, typical	-147, typical	-137, typical	
>1 GHz to 2.5 GHz	_	-149	-141	
	-168, typical	-151, typical	-143, typical	
>2.5 GHz to 3.5 GHz	_	-150	-140	
	-168, typical	-153, typical	-143, typical	
>3.5 GHz to 5 GHz	_	-144	-136	
	-168, typical	-147, typical	-138, typical	
>5 GHz to 6 GHz	_	-147	-138	
	-168, typical	-149, typical	-140, typical	

Conditions: Averages: 200 sweeps; baseband signal attenuation: -40 dB; noise measurement frequency offset: 4 MHz relative to output tone frequency.

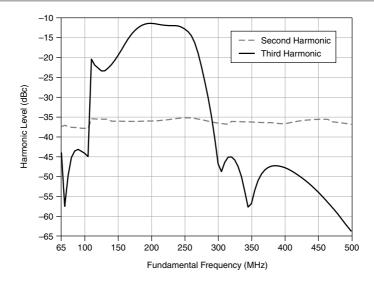
Spurious Responses

Harmonics

Table 8. Second Harmonic Level (dBc)

Fundamental Frequency	23 °C ± 5 °C	0 °C to 55 °C
65 MHz to 3.5 GHz	-27	-24
	-29, typical	-27, typical
>3.5 GHz to 4.5 GHz	-26	-24
	-28, typical	-26, typical

Table 8. Second Harmonic Level (dBc) (Continued)


Fundamental Frequency	23 °C ± 5 °C	0 °C to 55 °C
>4.5 GHz to 6 GHz	-28	-26
	-33, typical	-31, typical

Conditions: Measured using 1 MHz baseband signal -1 dBFS; fundamental signal measured at +6 dBm CW; second harmonic levels nominally <-30 dBc for fundamental output levels of ≤5 dBm

Note Higher order harmonic suppression is degraded in the range of 109 MHz to 270 MHz and third harmonic performance is shown in the following figure. For frequencies outside the range of 109 MHz to 270 MHz, higher order harmonic distortion is equal to or better than the second harmonic level as specified in the previous table.

Figure 8. Harmonic Level, 11 65 MHz to 500 MHz, Measured

¹¹ Measured using 1 MHz baseband signal -1 dBFS; fundamental signal measured at +6 dBm CW.

Nonharmonic Spurs

Table 9. Nonharmonic Spurs (dBc)

Frequency	<100 kHz Offset	≥100 kHz Offset	>1 MHz Offset
65 MHz to 3 GHz	<-55, typical	<-62	<-75
>3 GHz to 6 GHz	<-55, typical	<-57	<-70
Conditions Outsit full code level > 20 dBm Meaning durith a single top of 1 dBEC			

Conditions: Output full scale level \geq -30 dBm. Measured with a single tone at -1 dBFS.

Third-Order Output Intermodulation

Table 10. Third-Order Output Intermodulation Distortion (IMD₃) (dBc), 0 dBm Tones

Fundamental Frequency	Baseband DAC: -2 dBFS	Baseband DAC: -6 dBFS
65 MHz to 1 GHz	-55, typical	-60, typical
>1 GHz to 3 GHz	-53, typical	-53, typical
>3 GHz to 5 GHz	-49, typical	-50, typical
>5 GHz to 6 GHz	-44, typical	-45, typical

Conditions: Two 0 dBm tones, 500 kHz apart at RF OUT.

RF gain applied to achieve the desired output power per tone.

Table 11. Third-Order Output Intermodulation Distortion (IMD₃) (dBc), -6 dBm Tones

Fundamental Frequency	Baseband DAC: -2 dBFS	Baseband DAC: -6 dBFS
65 MHz to 1.5 GHz	-50	-59
	-54, typical	-62, typical
>1.5 GHz to 3.5 GHz	-54	-59
	-57, typical	-62, typical
>3.5 GHz to 5 GHz	-50	-55
	-53, typical	-58, typical

Table 11. Third-Order Output Intermodulation Distortion (IMD₃) (dBc), -6 dBm Tones (Continued)

Fundamental Frequency	Baseband DAC: -2 dBFS	Baseband DAC: -6 dBFS
>5 GHz to 6 GHz	-47	-51
	-50, typical	-54, typical

Conditions: Two -6 dBm tones, 500 kHz apart at RF OUT.

RF gain applied to achieve the desired output power per tone.

Table 12. Third-Order Output Intermodulation Distortion (IMD₃) (dBc), -36 dBm Tones

Fundamental Frequency	Baseband DAC: -2 dBFS	Baseband DAC: -6 dBFS
65 MHz to 200 MHz	-52	-57
	-54, typical	-60, typical
>200 MHz to 6 GHz	-52	-55
	-54, typical	-58, typical

Conditions: Two -36 dBm tones, 500 kHz apart at RF OUT.

RF gain applied to achieve the desired output power per tone.

LO Residual Power

Table 13. VSG LO Residual Power (dBc)

Center Frequency	Self-Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
≤109 MHz	_	_
	-60, typical	-49, typical
>109 MHz to 375 MHz	_	-45
	-52, typical	-50, typical
>375 MHz to 1 GHz	_	-53
	-59, typical	-57, typical

Table 13. VSG LO Residual Power (dBc) (Continued)

Center Frequency	Self-Calibration °C ± 1 °C	Self-Calibration °C ± 5 °C
1 GHz to 2 GHz	_	-55
	-60, typical	-63, typical
2 GHz to 3 GHz	_	-50
	-60, typical	-53, typical
3 GHz to 5 GHz	_	-53
	-58, typical	-55, typical
5 GHz to 6 GHz	_	-48
	-56, typical	-53, typical

Conditions: Configured power levels -50 dBm to +10 dBm.

This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

For optimal performance, NI recommends running self-calibration when the PXIe-5646R-G temperature drifts \pm 5 °C from the temperature at the last self-calibration. For temperature changes >± 5 °C from self-calibration, LO residual power is -40 dBc.

Figure 9. VSG LO Residual Power, 12 109 MHz to 6 GHz, Typical

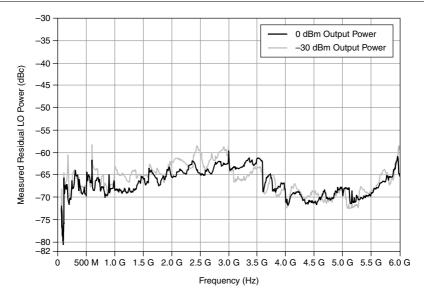


Table 14. VSG LO Residual Power (dBc), Low Power

Center Frequency	Self-Calibration °C ± 5 °C
≤109 MHz	_
	-49, typical
>109 MHz to 375 MHz	_
	-50, typical
>375 MHz to 2 GHz	_
	-60, typical
>2 GHz to 3 GHz	_
	-53, typical
>3 GHz to 5 GHz	_
	-58, typical

¹² Measurement performed after self-calibration.

Table 14. VSG LO Residual Power (dBc), Low Power (Continued)

Center Frequency	Self-Calibration °C ± 5 °C
>5 GHz to 6 GHz	_
	-55, typical

Conditions: configured power levels < -50 dBm to -70 dBm.

This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

For optimal performance, NI recommends running self-calibration when the PXIe-5646R-G temperature drifts ± 5 °C from the temperature at the last self-calibration. For temperature changes >± 5 °C from self-calibration, LO residual power is -40 dBc.

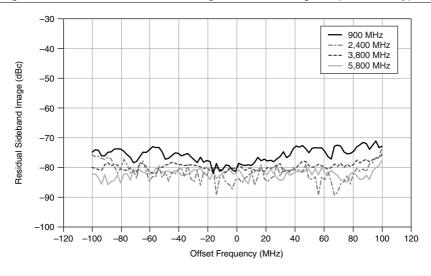
Residual Sideband Image

Table 15. VSG Residual Sideband Image (dBc)

Center Frequency	Bandwidth	Self-Calibration °C ± 1°C	Self-Calibration °C ± 5 °C
≤109 MHz	20 MHz	_	-40
		-55, typical	-42, typical
>109 MHz to	80 MHz	_	_
200 MHz		-45, typical	-40, typical
>200 MHz to 200 MHz 500 MHz	200 MHz	_	-45
		-45, typical	-50, typical
>500 MHz to 1 GHz ≤180 MHz	≤180 MHz	_	-60
	≤180 MHz to 200 MHz	-70, typical	-63, typical
		_	-57
		-70, typical	-60, typical
>1 GHz to 2 GHz	200 MHz		-60
		-70, typical	-63, typical

Table 15. VSG Residual Sideband Image (dBc) (Continued)

Center Frequency	Bandwidth	Self-Calibration °C ± 1°C	Self-Calibration °C ± 5 °C
>2 GHz to 6 GHz	200 MHz	_	-50
		-65, typical	-55, typical


Conditions: Reference levels -30 dBm to +30 dBm.

This specification describes the maximum residual sideband image within a 200 MHz bandwidth at a given RF center frequency. Bandwidth is restricted to 20 MHz for LO frequencies \leq 109 MHz.

This specification is valid only when the module is operating within the specified ambient temperature range and within the specified range from the last self-calibration temperature, as measured with the onboard temperature sensors.

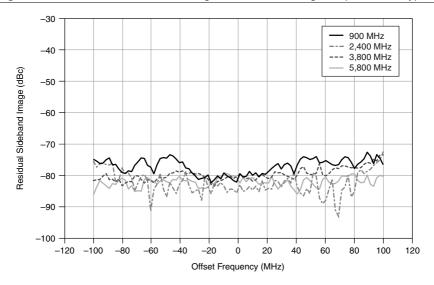
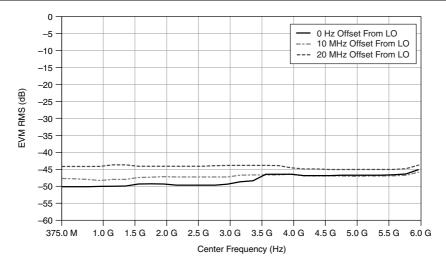

For optimal performance, NI recommends running self-calibration when the PXIe-5646R-G temperature drifts \pm 5 °C from the temperature at the last self-calibration. For temperature changes \geq 5 °C from self-calibration, residual image suppression is -40 dBc.

Figure 10. VSG Residual Sideband Image, 13 0 dBm Average Output Power, Typical

¹³ Measurement performed after self-calibration.

Figure 11. VSG Residual Sideband Image, ¹³ -30 dBm Average Output Power, Typical


Error Vector Magnitude (EVM)

VSG EVM

20 MHz bandwidth 64-QAM EVM14 375 MHz to 6 GHz

-40 dB, typical

¹⁴ Conditions: EVM signal: 20 MHz bandwidth; 64 QAM signal. Pulse-shape filtering: root-raised cosine, alpha=0.25; PXIe-5646R-G peak output power: -10 dBm; Reference Clock source: internal. Measurement instrument: PXIe-5665; reference level: -10 dBm; Reference Clock source: internal; record length: 300 µs.

Application-Specific Modulation Quality

Typical performance assumes the PXIe-5646R-G is operating within \pm 5 °C of the previous self-calibration temperature, and that the ambient temperature is 0 °C to 55 °C.

WLAN 802.11ac

OFDM ¹⁶	
80 MHz bandwidth	-45 dB (rms), typical
80 MHz bandwidth (channel tracking enabled, preamble and data)	-50 dB (rms), typical
160 MHz bandwidth	-43 dB (rms), typical
160 MHz bandwidth (channel tracking enabled, preamble and data)	-47 dB (rms), typical

¹⁵ Conditions: 20 MHz bandwidth, 64 QAM; centered at LO frequency or offset digitally as listed.

Conditions: PXIe-5646R-G connected to RF IN of a PXIe-5646R; 5,800 MHz; average power: -30 dBm to -5 dBm; 20 packets; 16 OFDM data symbols; MCS=9; 256 QAM.

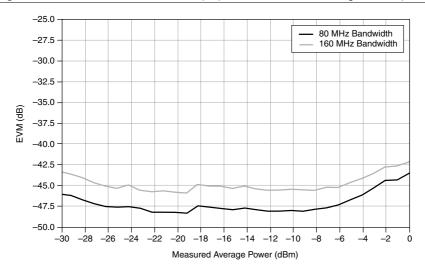
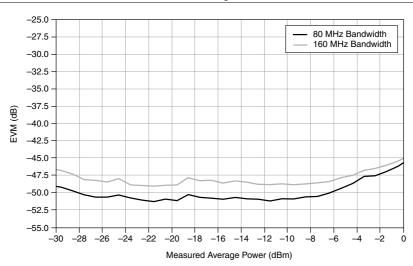



Figure 14. WLAN 802.11ac RMS EVM (dB) versus Measured Average Power (dBm), Channel Tracking Enabled

WLAN 802.11n

Table 16. 802.11n OFDM EVM (rms) (dB), Typical

Frequency	20 MHz Bandwidth	40 MHz Bandwidth
2,412 MHz	-50	-50
5,000 MHz	-48	-46

Conditions: PXIe-5646R-G connected to RF IN of a PXIe-5646R; average power: -10 dBm; reference level: auto-leveled based on real-time average power measurement; 20 packets; 3/4 coding rate; 64 QAM.

WLAN 802.11a/g/j/p

Table 17. 802.11a/g/j/p OFDM EVM (rms) (dB), Typical

Frequency	20 MHz Bandwidth
2,412 MHz	-53
5,000 MHz	-50

Conditions: PXIe-5646R-G connected to RF IN of a PXIe-5646R; average power: -10 dBm; reference level: auto-leveled based on real-time average power measurement; 20 packets; 3/4 coding rate; 64 QAM.

WLAN 802.11g

Table 18. 802.11g DSSS-OFDM EVM (rms) (dB), Typical

Frequency	20 MHz Bandwidth
2,412 MHz	-53
5,000 MHz	-50

Conditions: PXIe-5646R-G connected to RF IN of a PXIe-5646R; average power: -10 dBm; reference level: auto-leveled based on real-time average power measurement; 20 packets; 3/4 coding rate; 64 QAM.

LTE

Table 19. SC-FDMA¹⁸ (Uplink FDD) EVM (rms) (dB), Typical

Frequency	5 MHz Bandwidth	10 MHz Bandwidth	20 MHz Bandwidth
700 MHz	-56	-56	-54
900 MHz	-55	-55	-53
1,430 MHz	-54	-54	-53
1,750 MHz	-51	-50	-50
1,900 MHz	-51	-50	-50
2,500 MHz	-50	-49	-49

 $^{^{17}\,}$ Conditions: PXIe-5646R-G connected to RF IN of a PXIe-5646R; 2,412 MHz; 20 MHz bandwidth; average power -10 dBm; reference level: auto-leveled based on real-time average power measurement; averages: 10; pulse-shaping filter: Gaussian reference; CCK 11 Mbps.

¹⁸ Single channel uplink only.

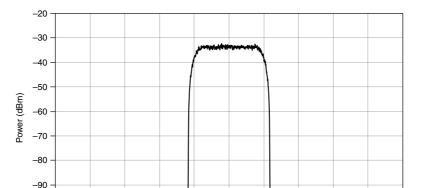


Figure 15. WCDMA Measured Spectrum¹⁹ (ACP)

Baseband Characteristics

994 M

992 M

996 M

998 M

1 G

Frequency (Hz)

1.002 G 1.004 G 1.006 G 1.008 G 1.01 G

Digital-to-analog converters (DACs)	
Resolution	16 bits
Sample rate ²⁰	250 MS/s
I/Q data rate ²¹	4 kS/s to 250 MS/s

Onboard FPGA

-100 -105

990 M

FPGA	Xilinx Virtex-6 LX240T
LUTs	150,720
Flip-flops	301,440
DSP48 slices	768
Embedded block RAM	14,976 kbits

¹⁹ Conditions: DL Test Model 1 (64DPCH); RF output level: -10 dBm average; PXIe-5646R-G connected to RF IN of a PXIe-5646R; measured results better than -65 dB.

DACs are dual-channel components with each channel assigned to I and Q, respectively. DAC sample rate is internally interpolated to 1 GS/s, automatically configured.

²¹ I/Q data rates lower than 250 MS/s are achieved using fractional interpolation.

Data transfers	DMA, interrupts, programmed I/O	
Number of DMA channels	16	
Onboard DRAM		
Memory size	2 banks, 512 MB per bank	
Theoretical maximum data rate	2.1 GB/s per bank	
Onboard SRAM		
Memory size	2 MB	
Maximum data rate (read)	40 MB/s	
Maximum data rate (write)	36 MB/s	

Front Panel I/O

RF OUT

Connector	SMA (female)	
Output impedance	50 Ω , nominal, AC coupled	
Absolute maximum reverse power ²²		
<4 GHz	+33 dBm (CW RMS)	
≥4 GHz	+30 dBm (CW RMS)	

Output Return Loss (VSWR)

Table 20. Output Return Loss (dB) (VSWR)

Frequency	Typical
109 MHz ≤ f < 2 GHz	19.0 (1.25:1)
2 GHz ≤ <i>f</i> < 5 GHz	14.0 (1.50:1)
5 GHz ≤ <i>f</i> ≤ 6 GHz	11.0 (1.78:1)
Return loss for frequencies < 109 MHz is typically better than 20 dB (VSWR < 1.22:1).	

 $^{^{\}rm 22}~$ For modulated signals, peak instantaneous power not to exceed corresponding peak power of specified CW.

CAL IN, CAL OUT

Connector	SMA (female)
Impedance	50 Ω, nominal

Caution Do not disconnect the cable that connects CAL IN to CAL OUT. Removing the cable from or tampering with the CAL IN or CAL OUT front panel connectors voids the product calibration and specifications are no longer warranted.

LO OUT (RF OUT 0)

Connectors	SMA (female)	
Frequency range	65 MHz to 6 GHz	
Power (65 MHz to 6 GHz)	$0 \text{ dBm} \pm 2 \text{ dB}$, typical	
Output power resolution	0.25 dB, nominal	
Output impedance	50 Ω , nominal, AC coupled	
Output return loss	>11.0 dB (VSWR <1.8:1), typical	
Output isolation (state: disabled)		
<2.5 GHz tuned LO	-45 dBc, nominal	
≥2.5 GHz tuned LO	-35 dBc, nominal	

LO IN (RF OUT 0)

Connectors	SMA (female)
Frequency range	65 MHz to 6 GHz
Expected input power (65 MHz to 6 GHz)	$0 \text{ dBm} \pm 3 \text{ dB}$, nominal
Input impedance	50 Ω , nominal, AC coupled
Input return loss	>11.7 dB (VSWR <1.7:1), typical
Absolute maximum power	+15 dBm
Maximum DC voltage	±5 VDC

REF IN

Connector	SMA (female)
Frequency	10 MHz
Tolerance ²³	$\pm 10 \times 10^{-6}$

 $^{^{23}}$ Frequency Accuracy = Tolerance \times Reference Frequency

Amplitude

Square	$0.7~V_{pk\text{-}pk}$ to $5.0~V_{pk\text{-}pk}$ into $50~\Omega$, typical
Sine ²⁴	1.4 V_{pk-pk} to 5.0 V_{pk-pk} into 50 Ω , typical
Input impedance	50 Ω, nominal
Coupling	AC

REF OUT

Connector	SMA (female)	
Frequency		
Reference Clock ²⁵	10 MHz, nominal	
Sample Clock	250 MHz, nominal	
Amplitude	1.65 Vpk-pk into 50 Ω , nominal	
Output impedance	50 Ω, nominal	
Coupling	AC	

SMA (famala)

PFI₀ Connector

Connector	SIVIA (Iemaie)	
Voltage levels ²⁶		
Absolute maximum input range	-0.5 V to 5.5 V	
$ m V_{IL}$	0.8 V	
$ m V_{IH}$	2.0 V	
$V_{ m OL}$	0.2 V with 100 μA load	
V_{OH}	2.9 V with 100 µA load	
Input impedance	10 kΩ, nominal	
Output impedance	50 Ω , nominal	
Maximum DC drive strength	24 mA	
Minimum required direction change latency ²⁷	48 ns + 1 clock cycle	

DIGITAL I/O

Connector	VHDCI

 $^{^{24}~1~}V_{rms}$ to 3.5 $V_{rms},$ typical. Jitter performance improves with increased slew rate of input signal.

²⁵ Refer to the *Internal Frequency Reference* for accuracy.

²⁶ Voltage levels are guaranteed by design through the digital buffer specifications.

²⁷ Clock cycle refers to the FPGA clock domain used for direction control.

Table 21 DIGITAL I/O Signal Characteristics

Signal	Direction	Port Width	
DIO <2320>	Bidirectional, per port	4	
DIO <1916>	Bidirectional, per port	4	
DIO <1512>	Bidirectional, per port	4	
DIO <118>	Bidirectional, per port	4	
DIO <74>	Bidirectional, per port	4	
DIO <30>	Bidirectional, per port	4	
PFI 1	Bidirectional	1	
PFI 2	Bidirectional	1	
Clock In	Input	1	
Clock Out	Output	1	
Voltage levels ²⁸			
Absolute maximum	m input range -0.5 V to 4.5 V		
$V_{\rm IL}$	0.8 V	0.8 V	
V	2 0 V		

Absolute maximum input range	-0.5 V to 4.5 V
$ m V_{IL}$	0.8 V
$ m V_{IH}$	2.0 V
$ m V_{OL}$	0.2 V with 100 μA load
V_{OH}	2.9 V with 100 μA load
Input impedance	
DIO <230>, CLK IN	$10 \text{ k}\Omega$, nominal
PFI 1, PFI 2	$100 \text{ k}\Omega$ pull up, nominal
Output impedance	50 Ω, nominal
Maximum DC drive strength	12 mA
Minimum required direction change latency ²⁹	48 ns + 1 clock cycle

125 MHz, typical

Maximum toggle rate

Voltage levels are guaranteed by design through the digital buffer specifications.
 Clock cycle refers to the FPGA clock domain used for direction control.

(_	
	_)
NC	1	35	NC
GND	2	36	GND
NC	3	37	NC
GND	4	38	GND
NC	5	39	NC
GND	6	40	GND
NC	7	41	NC
RESERVED	8	42	GND
DIO 23	9	43	DIO 22
GND	10	44	GND
DIO 21	11	45	DIO 20
GND	12	46	GND
DIO 19	13	47	DIO 18
GND	14	48	GND
DIO 17	15	49	DIO 16
GND	16	50	GND
DIO 15	17	51	DIO 14
GND	18	52	RESERVED
DIO 13	19	53	DIO 12
GND	20	54	GND
DIO 11	21	55	DIO 10
GND	22	56	GND
DIO 9	23	57	DIO 8
GND	24	58	GND
DIO 7	25	59	DIO 6
PFI 1	26	60	RESERVED
DIO 5	27	61	DIO 4
GND	28	62	GND
DIO 3	29	63	DIO 2
NC	30	64	PFI 2
DIO 1	31	65	DIO 0
GND	32	66	GND
CLK OUT	33	67	CLK IN
GND	34	68	GND

Power Requirements

Table 22. Power Requirements

Voltage (V _{DC})	Typical Current (A)	Maximum Current (A)
+3.3	4.7	5.4
+12	3.5	4.2

Power is 58 W, typical. Consumption is from both PXI Express backplane power connectors.

Calibration

Interval	1 year

Note For the two-year calibration interval, add 0.2 dB to one year specifications for Output Power Level Accuracy and RF output Frequency Response.

Physical Characteristics

PXIe-5646R-G module	3U, three slot, PXI Express module
	$6.1 \text{ cm} \times 12.9 \text{ cm} \times 21.1 \text{ cm}$
	$(2.4 \text{ in.} \times 5.6 \text{ in.} \times 8.3 \text{ in.})$
Weight	1,360 g (48.0 oz)

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range	0 °C to 55 °C (Tested in accordance with
	IEC 60068-2-1 and IEC 60068-2-2. Meets
	MIL-PRF-28800F Class 3 low temperature
	limit and MIL-PRF-28800F Class 2 high
	temperature limit.)
Relative humidity range	10% to 90%, noncondensing (Tested in
	accordance with IEC 60068-2-56.)

Storage Environment

Ambient temperature range	-40 °C to 71 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 limits.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Meets MIL-PRF-28800F Class 2 limits.)
Random vibration	
Operating	5 Hz to 500 Hz, $0.3~g_{rms}$ (Tested in accordance with IEC 60068-2-64.)
Nonoperating	5 Hz to 500 Hz, 2.4 g_{rms} (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.)

Compliance and Certifications

Safety

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online* Product Certification section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations, certifications, and additional information, refer to the Online Product Certification section.

CE Compliance (€

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/ certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the Minimize Our Environmental Impact web page at *ni.com/environment*. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit *ni.com/environment/weee*.

电子信息产品污染控制管理办法(中国 RoHS)

中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物 质指令(RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs china。 (For information about China RoHS compliance, go to ni.com/environment/rohs china.)

Information is subject to change without notice. Refer to the NI Trademarks and Logo Guidelines at ni.com/trademarks for information on NI trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering NI products/technology, refer to the appropriate location: Help»Patents in your software, the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents. You can find information about end-user license agreements (EULAs) and third-party legal notices in the readme file for your NI product. Refer to the Export Compliance Information at ni.com/legal/export-compliance for the NI global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data. NI MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS. U.S. Government Customers: The data contained in this manual was developed at private expense and is subject to the applicable limited rights and restricted data rights as set forth in FAR 52.227-14, DFAR 252.227-7014, and DFAR 252.227-7015. © 2015—2018 National Instruments. All rights reserved.