Утверждено 5К2.840.071 РЭ-ЛУ Госреестр № 72151-18

Гигрометр кулонометрический БАЙКАЛ – 5Ц

Руководство по эксплуатации

5К2.840.071 РЭ

Содержание

<u> 1 ОПИСАНИЕ И РАБОТА ГИГРОМЕТРА</u>	3
1.1 Назначение гигрометра	3
1.2 Характеристики	4
1.3 Комплектность	7
1.4 Устройство и работа гигрометров	9
1.5 Маркировка	15
1.6 Упаковка	16
2 ИСПОЛЬЗОВАНИЕ ГИГРОМЕТРА ПО НАЗНАЧЕНИЮ	16
2.1 Эксплуатационные ограничения	16
2.2 Размещение и монтаж	16
2.3 Подготовка гигрометра к использованию	19
2.4 Использование гигрометра	19
3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	20
3.1 Общие указания	20
4 ТЕКУЩИЙ РЕМОНТ	22
4.1 Возможные неисправности и методы их устранения	22
4.2 Меры безопасности	22
<u> 5 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ</u>	23
6 ГАРАНТИИ ИЗГОТОВИТЕЛЯ	24
7 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ	24
8 СВЕДЕНИЯ ОБ УПАКОВЫВАНИИ	26
9 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	26
10 СВЕДЕНИЯ О ПОВЕРКЕ	27
ПРИЛОЖЕНИЕ А Значение влажности газов в разных единицах измерений	28

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, монтажом, эксплуатацией и правилами обслуживания гигрометра кулонометрического БАЙКАЛ-5Ц ТУ 4215-077-14464306-2018 (далее гигрометр).

1 ОПИСАНИЕ И РАБОТА ГИГРОМЕТРА

1.1 Назначение гигрометра

1.1.1 Гигрометр представляет собой автоматический цифровой многофункциональный восстанавливаемый, одноканальный непрерывного действия промышленный прибор для щитового монтажа, предназначенный для измерений объемной доли влаги (далее ОДВ) в воздухе, азоте, углекислом газе, водороде, кислороде, инертных и других газах и их смесях, не взаимодействующих с фосфорным ангидридом и не создающих взрывоопасных концентраций.

По эксплуатационной законченности гигрометр представляет собой изделие третьего порядка по ГОСТ Р 52931-2008.

Гигрометр может устанавливаться на щите или столе и использоваться для местной работы на воздухоразделительных установках и технологических производствах, связанных с контролем ОДВ в анализируемом газе, а также в лабораториях для научных исследований.

Гигрометр совместим с другими изделиями, не является источником загрязнений окружающей среды и безопасен для жизни и здоровья населения.

- 1.1.2 Рабочие условия применения гигрометра:
- температура окружающей среды от плюс 5 до плюс 50 °C;
- атмосферное давление от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.);
- относительная влажность окружающей среды до 80 % при температуре плюс 35 $\mathbb C$;
 - давление анализируемого газа на входе в гигрометр от 160 до 1000 кПа.

Гигрометр предназначен для эксплуатации во взрывобезопасных и пожаробезопасных помещениях.

По защищенности от воздействия окружающей среды гигрометр имеет исполнение, защищенное от попадания внутрь изделия твердых тел (степень защиты IP20 по ГОСТ 14254-2015).

1.2 Характеристики

- 1.2.1 Гигрометр имеет следующие диапазоны измерения (области измерений ОДВ): 0-10; 0-100; 0-1000 млн⁻¹.
- 1.2.2 Цена единицы наименьшего разряда отсчетного устройства: 0.01 млн^{-1} (в области значений измеряемой ОДВ $0-10 \text{ млн}^{-1}$); 0.1 млн^{-1} (в области значений измеряемой ОДВ $0-100 \text{ млн}^{-1}$); 1.0 млн^{-1} (в области значений измеряемой ОДВ $0-1000 \text{ млн}^{-1}$).
- 1.2.3 Гигрометр имеет унифицированный выходной сигнал постоянного 4-20~mA.

Номинальная статистическая характеристика преобразования унифицированного выходного сигнала в показание должна выражаться формулой:

$$B_{I_{Bbix}} = \frac{I_{Bbix} - 4}{16} \cdot \Pi_{H}$$
 (1)

 B_{I} где B_{i} – объемная доля влаги в анализируемом газе, млн $^{-1}$;

 $I_{\text{вых}}$ – выходной сигнал гигрометра, мА;

 $\Pi_{\rm H}$ – нормирующий значение ОДВ, млн⁻¹;

-10, 100, 1000 млн⁻¹;

16 – нормирующий коэффициент, мА.

- 1.2.4 Гигрометр имеет индикацию в виде символа "- |" на табло цифрового индикатора о превышении значения ОДВ в анализируемом газе более 1000 млн⁻¹.
- 1.2.5 Гигрометр имеет ручной контроль о неисправности чувствительного элемента.

- 1.2.6 Номинальный расход анализируемого газа через чувствительный элемент (при температуре окружающей среды плюс 20° С и атмосферном давлении 101,3 кПа) равен 100 см³/мин.
- 1.2.7 Общий расход анализируемого газа через гигрометр не более 1000 см³мин при входном давлении 160 кПа.
- 1.2.8 Гигрометр имеет устройство ручного переключения диапазонов измерения.
 - 1.2.9 Мощность, потребляемая гигрометром, не более 15 В А.
- 1.2.10 Габаритные размеры и масса гигрометра не более $220 \times 190 \times 150$ мм и 4.5 кг.
- 1.2.11 Пределы допускаемой основной приведенной (к нормирующим значениям 10, 100 и 1000 млн⁻¹) погрешности гигрометра по цифровому табло δ_{0P} и выходному сигналу δ_{IP} равны ± 6 %, ± 4 % и $\pm 2,5$ %, соответственно, для диапазонов измерений ОДВ 0-10, 0-100 и 0-1000 млн⁻¹.
- 1.2.11.1 Пределы допускаемой погрешности преобразования тока чувствительного элемента в выходной сигнал гигрометра должны быть $\pm 2,5$; $\pm 1,5$; $\pm 1,0$ % соответственно, для диапазонов измерений ОДВ 0-10, 0-100, 0-1000 млн⁻¹.
- 1.2.11.2 Пределы допускаемой погрешности, обусловленной отклонением значения расхода через чувствительный элемент от номинального, должны быть $\pm 1 \%$.
- 1.2.11.3 Предел допускаемой погрешности, обусловленный фоновым выходным сигналом гигрометра, должен быть плюс 3,0 %.
- 1.2.11.4 Предел допускаемой погрешности, обусловленным неполным извлечением влаги чувствительным элементом, должен быть минус 0,75 %.
- 1.2.12 Пределы допускаемой дополнительной приведенной погрешности гигрометра, вызванной изменением температуры окружающей среды на каждые $10~^{\circ}$ C в диапазоне от плюс 5 до плюс $50~^{\circ}$ C, равны $\pm~2~\%$.
- 1.2.13 Пределы допускаемой дополнительной приведенной погрешности гигрометра, вызванной изменением атмосферного давления на каждые 3,3 кПа в диапазоне от 84 до 106,7 кПа, равны \pm 2 %.

- 1.2.14 Пределы допускаемой дополнительной приведенной погрешности гигрометра, вызванной изменениями давления анализируемого газа на каждые 30 %, в диапазоне от 160 до 1000 кПа, равны ± 1 %.
- 1.2.15 Пределы допускаемой дополнительной приведенной погрешности гигрометра за 30 сут. непрерывной работы (стабильность гигрометра) на одном и том же анализируемом газе равны $0.5\delta_{0P}$.
- 1.2.16 Предел допускаемого времени установления показаний гигрометра $T_{0.9Д}$ для нормальных условий применения должен быть 3 мин., при измерениях в области значений ОДВ 100-1000 млн⁻¹.
 - 1.2.17 Средняя наработка на отказ не менее 20000 ч.
 - 1.2.18 Средний срок службы не менее 10 лет.
 - 1.2.19 Сведения о содержании драгоценных металлов: платина — 0,4044 г. сплав платино-иридиевый — 0,5530 г.

1.3 Комплектность

1.3.1 Комплект поставки приведен в таблице 1.

Таблица 1

Обозначение	Наименование	Кол-во,	Примечания
		шт.	
5K2.840.071	Гигрометр БАЙКАЛ–5Ц	1	
СТП	"Гигрометры кулонометрические.		
5K0.054.016-2002	Методы регенерации чувствительных		
	элементов. Типовые технологические		
	процессы"	1	
МИ	"Методика измерений расхода газа		
5K0.283.001-2012	пузырьковым методом"	1	
№ M	"Свидетельство об аттестации		
02-2012-01.00294-	методики измерений"	1	
2012			
5К2.840.071 РЭ	"Гигрометр БАЙКАЛ-5Ц.		
	Руководство по эксплуатации."	1	
МИ 2947-2005	"ГСИ Гигрометры кулонометрические.		
	Методика поверки".	1	
	Комплект запасных частей		
5K5.184.112-01	<u>5K4.070.281</u> Элемент чувствительный	1	
5K8.683.289-01	Прокладка	6	
H5K8.684.346-02	Кольцо 004-007-19-2-4 ГОСТ 9833-73	2	
H5K8.684.346-08	Кольцо 006-009-19-2-4 ГОСТ 9833-73	2	
	Вставка плавкая ВП1-1-0,5А		
	АГ0.481.303 ТУ	3	
	Кислота ортофосфорная "ХЧ"		Во флаконе с
	ГОСТ 6552-82 (20 % раствор)	80 мл.	дозатором
	Трубка 305 ТВ-40 6 белая 1 сорт		
	ГОСТ 19034-82	0,1 м.	

Продолжение таблицы 1

Обозначение	Наименование	Кол-во,	Примечания
		шт.	
	Комплект принадлежностей		
	<u>5K4.072.130</u>		
5K2.833.007	Устройство для измерений расхода		
	газа УИРГ-2А	1	
	Штекер малогабаритный МШ1		
	ОЮО.364.000 ТУ	2	
	Комплект монтажных частей		
	<u>5K4.075.159</u>		
5К6.452.295-05	Трубка	1	<i>l</i> =100 мм.
Н5К8.652.130	Ниппель прижимной	2	
Н5К8.658.013	Гайка накидная	2	
	Вилка ОНЦ-РГ-09-4/18-В12		
	бРО.364.082 ТУ	1	
	Розетка ОНЦ-РГ-09-4/18-Р12		
	бРО.364.082 ТУ	1	

1.4 Устройство и работа гигрометров

- 1.4.1 Внешний вид гигрометра БАЙКАЛ-5Ц представлен на рисунке 4.
- 1.4.2 Принцип работы гигрометра иллюстрируется на рисунке 1, на котором изображена упрощенная схема гигрометра.

В канале цилиндрического стеклянного корпуса 1 кулонометрического чувствительного элемента размещены платино-иридиевые или родиевые электроды 2, 3 и 4, выполненные в виде геликоидальных несоприкасающихся спиралей. Электроды 3 и 4 расположены последовательно друг за другом по ходу газового тракта. На стенки канала и электрода нанесена пленка частично гидратированной пятиокиси фосфора P_2O_5 , обладающей высокой влагосорбирующей способностью.

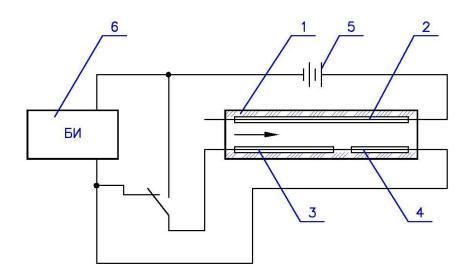
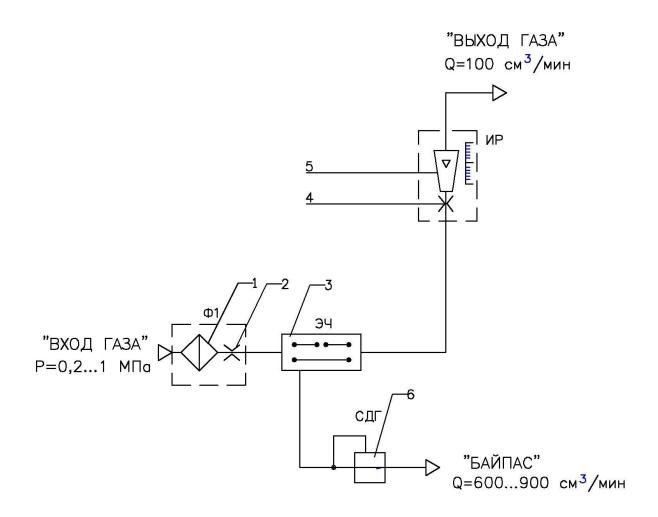


Рисунок 1 - Функциональная схема гигрометра

¹-корпус, 2-электрод общий, 3-электрод рабочей части чувствительного элемента, 4-электрод контрольной части чувствительного элемента, 5-источник питания, 6-блок измерений.

Через чувствительный элемент в направлении, указанном стрелкой, непрерывно проходит анализируемый газ, расход которого поддерживается постоянным, а величина выбрана таким образом, чтобы практически вся влага извлеклась из потока анализируемого газа пленкой пятиокиси фосфора. К электродам приложено напряжение от источника постоянного тока 5, величина которого превышает потенциал разложения воды. Таким образом, одновременно с непрерывным количественным извлечением влаги пленкой сорбирующего вещества из точно дозируемого потока анализируемого газа происходит электролитическое разложение поглощенной влаги. В установившемся режиме ток электролиза, контролируемый гигрометром, является мерой абсолютного содержания влаги в газе.

В процессе работы чувствительного элемента происходит постепенное уменьшение активной поверхности сорбирующей влагу пленки пятиокиси фосфора, равносильное укорочению чувствительного элемента со стороны входа анализируемого газа.

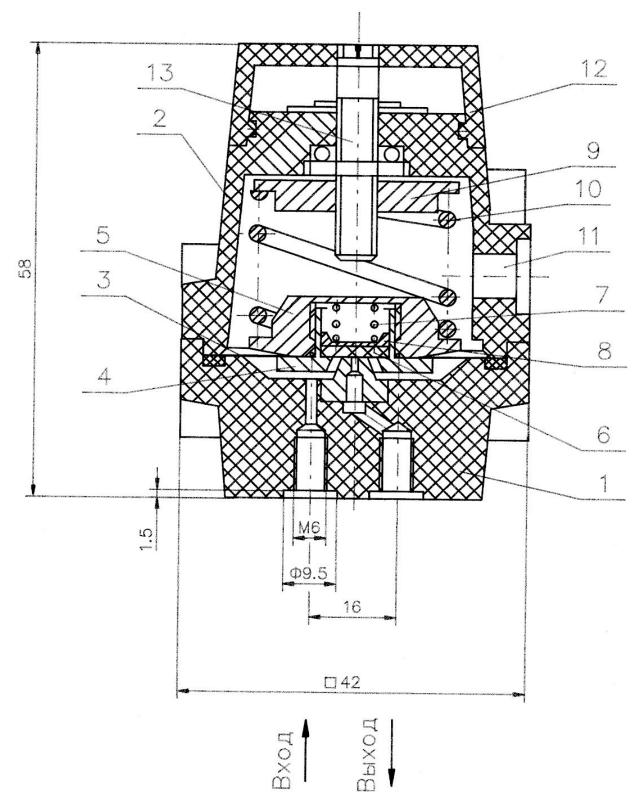

Уменьшение поверхности происходит в результате загрязнения пленки механическими примесями и полимеризующимися на ней компонентами анализируемого газа и в результате постепенного выноса пленки газовым потоком.

В связи с перечисленным, во время эксплуатации гигрометров количество влаги, не извлеченной в чувствительном элементе, постепенно увеличивается.

Зная законы распределения тока по длине чувствительного элемента и величину участка чувствительного элемента, занимаемого электродом 4, можно по величине тока электролиза в цепи электрода и суммарному току электролиза чувствительного элемента определить полноту извлечения влаги в чувствительном элементе.

С целью проверки полноты извлечения влаги в конструкции гигрометра предусмотрена возможность контроля полноты извлечения влаги в чувствительном элементе.

1.4.3 Принципиальная газовая схема гигрометра приведена на рисунке 2.



- $1- \phi$ ильтр ($\Phi 1$); 2- coпротивление постоянное пневматическое (СПП1);
- 3- элемент чувствительный (ЭЧ); 4 —сопротивление постоянное пневматическое (СПП 2); 5 индикатор расхода (ИР); 6 стабилизатор давления газа СДГ-116A.

Сопротивления постоянные пневматические подбираются в зависимости от вида анализируемого газа расчетным путем. Вид газа, на котором произведена настройка, указан в РЭ.

Рисунок 2 – Принципиальная газовая схема

- 1.4.3.1 Анализируемый газ подается под давлением от 200 до 1000 кПа на штуцер "ВХОД ГАЗА" гигрометра, проходит через фильтр грубой очистки Ф1, далее через пневматическое сопротивление СПП1 и разделяется на два потока – байпасный и дозируемый. В точке разделения потоков давление поддерживается постоянным с помощью стабилизатора давления СДГ. Дозируемый поток газа, очищаясь от возможных механических примесей на фильтре Ф1, проходит через пневматическое сопротивление $C\Pi\Pi 2$, чувствительный элемент Э4, пневматическое сопротивление индикатор расхода газа ИР, выбрасывается в атмосферу. Байпасный поток проходит через стабилизатор давления газа СДГ и сбрасывается в дренажную линию или в атмосферу.
- 1.4.3.2 Индикатор расхода газа ИР показывает прохождение анализируемого газа через чувствительный элемент. Индикатор расхода газа не является измерительным средством и по его показаниям лишь приблизительно судят о величине расхода газа.
- 1.4.3.3 Стабилизатор давления газа СДГ-116А приведен на рисунке 3. Стабилизатор давления газа предназначен для регулирования и стабилизации давления газа на входе чувствительного элемента и тем самым обеспечивает постоянный расход газа через чувствительный элемент. Стабилизатор СДГ-116А состоит из корпуса 1, крышки 2, между которыми закреплена мембрана 3. В жестком центре мембраны, состоящем из фланца 4 и тарелки 5, расположен клапан 6, поджатый пружиной 7 через толкатель 8. Клапан 6 перекрывает сопло корпуса 1, связанное каналом со штуцерным гнездом выхода газа. Под мембраной 3 расположена камера стабилизируемого давления, связанная каналом со штуцерным гнездом выхода газа. Сверху на мембрану через тарелку 9 воздействует пружина 10, подпирание которой регулируется установочным винтом 13. Винт сверху закрывается колпачком 12 с отверстием под отвертку. Для соединения надмембранной полости с атмосферой в крышке 2 имеется отверстие 11. В нижней части корпуса 1 имеется стрелка, указывающая направление движения газа.

1-корпус, 2-крышка, 3-мембрана, 4-фланец, 5-тарелка, 6-клапан, 7-пружина, 8-толкатель, 9-тарелка, 10-пружина, 11-отверстие, 12-колпачок, 13-установочный винт.

Рисунок 3 — Стабилизатор давления газа СДГ — 116 A

Принцип работы стабилизатора СДГ-116A основан на уравновешивании силы упругой деформации регулирующей пружины 10, действующей на мембрану 3, и силы от давления газа под мембраной. Мембрана управляет работой клапана 6, при этом в сопло корпуса 1 сбрасывается такое количество газа, что давление в подмембранной камере и газовой линии до стабилизатора остается постоянным. Вращением установочного винта устанавливается необходимое давление в рабочем диапазоне, обеспечивающее расход газа через чувствительный элемент 100 см³/мин.

При вращении установочного винта против часовой стрелки стабилизируемое давление увеличивается, а при вращении установочного винта по часовой стрелке стабилизируемое давление уменьшается.

При работе стабилизатора пружина 7 прижимает клапан 6 вниз до упора и упругих деформаций не испытывает, т. е. клапан 6, фланец 4 и тарелка 5 представляют при работе жесткий узел. В нерабочем положении, когда давление газа в подмембранной камере отсутствует, пружина 10 прижимает жесткий центр мембраны до крайнего нижнего положения, при этом сопло корпуса 1 через клапан 6 и толкатель 8 сжимает пружину 7. Тем самым клапан 6 предохраняется от разрушения кромками сопла.

- 1.4.3.4 В гигрометре применяется фильтр грубой очистки. Фильтр состоит из корпуса и установленного в нем фильтрующего элемента из пористого металла X18H15-МП-8 (ПНС-8) ТУ14-1-2173-77.
- 1.4.4 Принципиальная электрическая схема гигрометра приведена в приложении Б.
- 1.4.4.1 Измерительная схема гигрометра состоит из следующих основных узлов: трансформатора, преобразователя, переключателя рода работ, кнопки контроля неисправности чувствительного элемента, переключателя диапазонов измерений ОДВ, разъемов для подключения внешних электрических соединений.

1.5 Маркировка

1.5.1 Маркировка гигрометра соответствует обозначениям:

На передней панели гигрометра:

БАЙКАЛ-5Ц; Н2О ppm; знак утверждения типа гигрометра ПР 50.2.107-09

На задней стенке корпуса гигрометра:

ЗЕМЛЯ; 0,5 А; СЕТЬ; ВЫХОД; ВХОД ГАЗА

Под крышкой:

10, 100, 1000; ОЭ ОЭ'; ПОВЕРКА; ИЗМЕРЕНИЕ; СЕТЬ; БАЙПАС; ВЫХОД; ГАЗ; РАСХОД; КОНТРОЛЬ.

На задней стенке гигрометра укреплена табличка и планка.

На табличке нанесено:

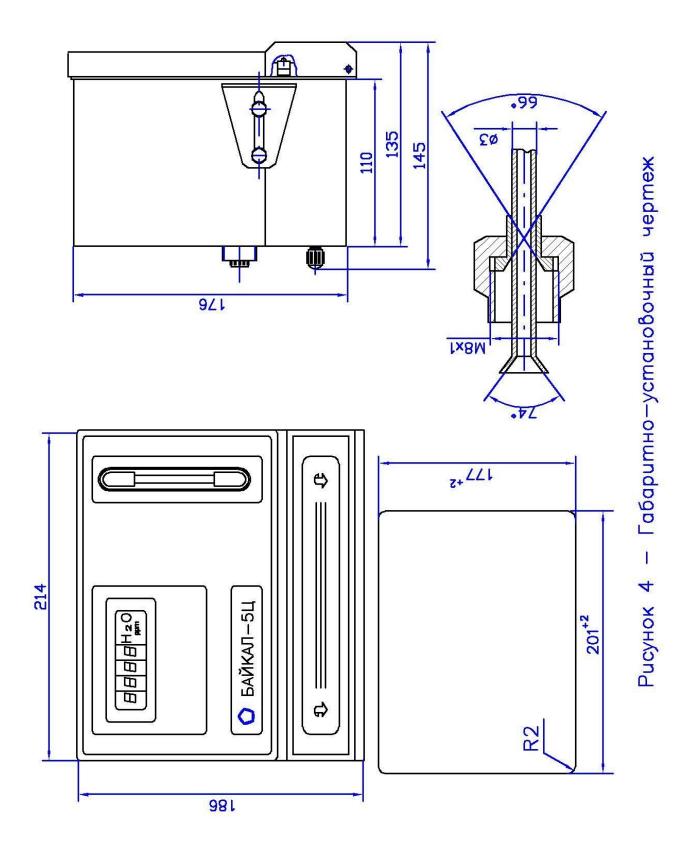
- товарный знак предприятия-изготовителя;
- условное обозначение гигрометра;
- номер технических условий ТУ 4215-077-14464306-2018;
- степень защиты IP20;
- обозначение диапазона измерений и погрешность;
- климатическое исполнение УХЛ 4.2.

На планке нанесено:

- год изготовления;
- заводской порядковый номер гигрометра по системе нумерации предприятия-изготовителя.

1.6 Упаковка

1.6.1 Гигрометр вместе с комплектом ЗИП, комплектом принадлежностей, комплектом монтажных частей, технической документацией упаковываются в тарный ящик. Под крышку укладывается упаковочный лист.


2 ИСПОЛЬЗОВАНИЕ ГИГРОМЕТРА ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

- 2.1.1 Не допускается включать гигрометр в сеть с напряжением более 242 В и менее 187 В.
 - 2.1.2 Не допускается эксплуатировать гигрометр без заземления.
 - 2.1.3 Не допускается вскрывать гигрометр до отключения его от сети.
- 2.1.4 Не допускается вскрывать предохранители под напряжением, закорачивать их или заменять другими, рассчитанными на больший ток.
- 2.1.5 Не допускается устранять негерметичность газовой схемы или менять чувствительные элементы, не отключив гигрометр от газовой магистрали и питающей сети.
- 2.1.6 Не допускается использовать гигрометр для измерения влажности взрывоопасных и токсичных газообразных сред.
- 2.1.7 Не допускается подавать анализируемый газ без включения гигрометра в электрическую сеть.

2.2 Размещение и монтаж

- 2.2.1 Гигрометр может устанавливаться на щите или столе и использоваться для местной и дистанционной работы.
- 2.2.2 Монтаж гигрометра производится в соответствии с габаритно-установочным чертежом, представленным на рисунке 4.

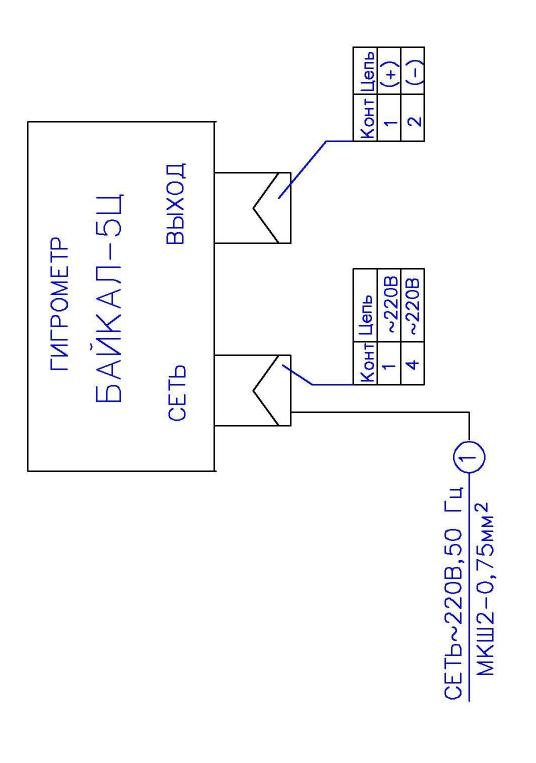


Рисунок 5 – Схема внешних электрических соединений

- 2.2.3 Электрический монтаж гигрометра производится согласно схеме внешних электрических соединений, приведенной на рисунке 5.
- 2.2.4 После выполнения монтажа производится тщательный внешний осмотр для убеждения в правильности установки гигрометра, газовых и электрических соединений.
- 2.2.5 При работе гигрометра тумблер "ИЗМЕРЕНИЕ ПОВЕРКА", расположенный под крышкой, должен находиться в положении "ИЗМЕРЕНИЕ".

2.3 Подготовка гигрометра к использованию

- 2.3.1 Подготовку к работе гигрометра производите в следующей последовательности:
- 1) установите переключатель диапазонов измерений "10", "100" и "1000" млн $^{-1}$ в положение "1000" млн $^{-1}$;
- 2) включите тумблер "СЕТЬ", при этом должно гореть цифровое табло индикации;
- 3) Соединение гигрометра с точкой отбора анализируемого газа должно выполняться трубкой 3×0,5 из стали 12X18H10T. Для отключения гигрометра от технологического трубопровода на подводящей линии должен быть установлен запорный вентиль, изготовленный из стали 12X18H10T. Вентиль с гигрометром не поставляется.
- 4) Все узлы и детали подводящих коммуникаций должны быть тщательно промыты спиртом и подсушены сухим газом.
- 5) С целью обеспечения возможно меньшего времени установления показаний гигрометра объем и длина газоподводящей линии должны быть минимальными.

При выполнении этих условий гигрометр подготовлен к работе.

2.4 Использование гигрометра

- 2.4.1 Измерьте и при необходимости отрегулируйте расход газа через чувствительный элемент в следующей последовательности:
- подсоедините к штуцеру "ВЫХОД. ГАЗ" устройство для измерения расхода газа УИРГ-2А;

- измерьте расход газа в соответствии с МИ 5К0.283.001-2012. Расход газа, приведенный к нормальным условиям, должен быть равным (100±1) см³/мин. При отклонении расхода от указанного, отрегулируйте его с помощью установочного винта стабилизатора давления газа.
- 2.4.2 Произведите сушку газовой системы гигрометра продувкой анализируемым газом.
- 2.4.3 При измерении гигрометром ОДВ меньше 100 млн⁻¹ (определение по цифровому табло) тумблер диапазонов измерений 0-10, 0-100, 0-1000 млн⁻¹ установите в положение 100, при измерении ОДВ меньше 10 млн⁻¹ тумблер установите в положение 10 млн⁻¹.
- 2.4.4 Выключение гигрометра проводите в следующей последовательности:
 - закройте запорный вентиль в газоподводящей линии;
- дождитесь отсутствия расхода газа через гигрометр по ротаметру;
 - выключите тумблер "СЕТЬ" гигрометра;
 - закройте заглушками "ВЫХОД. ГАЗ" и "БАЙПАС".

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Общие указания

3.1.1 При эксплуатации гигрометра следует иметь в виду, что при резком изменении температуры или давления анализируемого газа нарушается сорбционное равновесие паров воды на стенках коммуникаций, вызывающее изменение объемной доли влаги в анализируемом газе.

После установления сорбционного равновесия гигрометр опять покажет действительную влажность газа.

Значение перевода ppm в разные единицы измерений при нормальных условиях приведены в приложении А.

3.1.2 Через каждые 30 сут. работы гигрометра необходимо проверять расход газа через чувствительный элемент и, при необходимости, отрегулировать его согласно п. 2.4.1.

- 3.1.3 Через каждые 6 мес. работы гигрометра необходимо проверить герметичность газового канала гигрометра и, при необходимости, устранить негерметичность согласно п. 3.1.4.
- 3.1.4 Проверку герметичности газового канала гигрометра производите в следующей последовательности:
- присоедините к штуцеру "ВЫХОД. ГАЗ" и "БАЙПАС" через тройник запорный вентиль, к запорному вентилю подсоедините источник газа;
- подсоедините к штуцеру "ВХОД ГАЗА" манометр с диапазоном измерений от0 до 160 кПа (до 1.6 кгс/см 2);
- откройте запорный вентиль и в газовой системе плавно создайте давление 150 кПа (1,5 кгс/см²);
- перекройте запорный вентиль, выдержите газовую систему под давлением не менее 5 мин для установления теплового равновесия;
 - определите спад давления за 15 мин;
 - спад давления не должен быть более $2 \text{ кПа } (0.02 \text{ кгс/см}^2).$

Если спад давления превышает 2 к Π а (0,02 кгс/см²), определите места негерметичности и загерметизируйте их, после чего повторите проверку.

- 3.1.5 При неисправности чувствительного элемента произведите его замену в следующей последовательности:
 - откройте крышку передней панели;
 - отверните гайку крепления чувствительного элемента;
 - выньте чувствительный элемент;
 - возьмите новый чувствительный элемент из комплекта ЗИП;
 - вставьте чувствительный элемент на место;
 - заверните гайку крепления чувствительного элемента;
 - проверьте герметичность по п. 3.1.4.

4 ТЕКУЩИЙ РЕМОНТ

4.1 Возможные неисправности и методы их устранения

4.1.1 Перечень наиболее часто встречающихся неисправностей и способы их устранения приведены в таблице 2.

Таблица 2

Наименование			
неисправности,	Вероятная причина	Способ устранения	
внешнее проявление			
При включении	Перегорел предохранитель,	Проверьте напряжение	
электриче-ского питания	подано завышенное	пита-ния гигрометра,	
гигрометр не работает (не	напря-жение, короткое	замените предохранитель	
горит табло цифровой	замыкание в цепи питания		
индикации)			
При включении	Обрыв в цепи	Проверьте контакты между	
электриче-ского питания	чувствитель-ного элемента	чувствительным элементом и	
гигрометр не работает (на		цепью электрического	
табло цифровой индикации		пита-ния	
высвечиваются нули)			
Гигрометр дает	Нестабилен расход газа через	Проверьте давление газа на	
нестабиль-ность показаний	чувствительный элемент	входе в гигрометр по	
		манометру	
Расход газа через	Низкое давление газа на	Установите необходимое	
чувстви-тельный элемент	входе в гигрометр.	давление.	
значитель-но меньше	Сбилась настройка расхода	Отрегулируйте расход газа	
номинального	газа.	согласно п. 2.4.1.	
	Засорено СПП		
	(сопротивле-ние		
	пневматическое		
	посто-янное).	Промойте фильтр	
	Засорен фильтр		

4.2 Меры безопасности

4.2.1 По способу защиты человека от поражения электрическим током гигрометр соответствует классу 01 по ГОСТ 12.2.007.0-75.

- 4.2.2 Требования к заземляющим устройствам, маркировке, различительной окраске по ГОСТ 12.2.007.0-75.
- 4.2.3 Эксплуатация гигрометра во взрывоопасном помещении запрещается.
- 4.2.4 При работе с водородом в помещении должны устанавливаться автоматические сигнализаторы наличия водорода в воздухе.
- 4.2.5 Сброс анализируемого водорода должен осуществляться за пределы помещения в коллектор с атмосферным давлением. Дренирование должно исключить возможность загрязнения помещения водородом.
- 4.2.6 При работе на кислороде исключить попадание масла в газовую систему гигрометра.

5 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1 Гигрометры, упакованные в тару, могут транспортироваться в закрытых неотапливаемых железнодорожных вагонах, в кузовах крытых автомашин или в герметизированных отапливаемых отсеках самолетов.

Вид оправки – мелкие партии, одиночные изделия. При транспортировании должны соблюдаться меры предосторожности, указанные на таре.

Во время транспортирования допускается кратковременное (не более суток) хранение гигрометров в транспортной таре под навесом или укрытых брезентом, которые обеспечивают защиту их от дождя, снега и прямых солнечных лучей.

- 5.2 Транспортная маркировка тары содержит манипуляционные знаки "ВЕРХ", "БЕРЕЧЬ ОТ ВЛАГИ", "ХРУПКОЕ, ОСТОРОЖНО".
- 5.3 Габаритные размеры грузового места составляют 570×248×358 мм.
 - 5.4 Масса грузового места составляет: брутто -10 кг, нетто -5 кг.
- 5.5 Транспортирование гигрометра должно производиться согласно документам соответствующего транспортного ведомства.

- 5.6 Условия транспортирования гигрометров в части воздействия климатических факторов соответствуют условиям хранения 5 по ГОСТ 15150-69.
- 5.7 Условия хранения гигрометров на складах изготовителя и потребителя должны соответствовать условиям хранения 1(Л) по ГОСТ 15150-69.

6 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1 Предприятие-изготовитель гарантирует соответствие гигрометра требованиям технических условий ТУ 4215-077-14464306-2018 при соблюдении потребителем условий транспортирования, хранения, монтажа и эксплуатации.
- 6.2 Гарантийный срок эксплуатации 12 мес. со дня ввода гигрометра в эксплуатацию, но не более 15 мес. с момента изготовления гигрометра.
- 6.3 Гарантийный срок хранения 3 мес. с момента изготовления гигрометра.
- 6.4 Послегарантийный ремонт гигрометра осуществляет предприятие-изготовитель по договору с предприятием-потребителем за отдельную плату.

7 СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

- 7.1 При получении неисправного гигрометра или гигрометра с неполным комплектом поставки заказчик имеет право предъявить претензии предприятию-изготовителю или транспортному предприятию.
- 7.2 В случае отказа гигрометра в работе или его неисправности в период гарантийных обязательств потребитель должен выслать в адрес предприятия-изготовителя письменное извещение со следующими данными:
- обозначение гигрометра, его номер (по системе нумерации предприятия-изготовителя), дата выпуска (см. раздел 9) и дата ввода в эксплуатацию;

- характер дефекта или неисправности;
- наличие у потребителя контрольно-измерительной аппаратуры,
 необходимой для проверки гигрометра;
- адрес, по которому должен прибыть представитель предприятия-изготовителя, номер телефона;
 - документы, необходимые для получения допуска.
- 7.3 Данные по времени наступления отказа гигрометра, характеру отказа, причинам отказа и мерам по устранению неисправностей должны заноситься в таблицу 3. В случае отсутствия этих данных рекламации не принимаются.

Таблица 3

Дата и время отказа гигро-метра или его составной час-ти. Режим работы, характер нагрузки	Характер (внешнее проявле-н ие) неис-правн ости	Причина неис-правности (отка-за), количество часов работы от-казавшего эле-мента гигрометра	Принятые меры по устранению неисправности, расход ЗИП и отметка о на-правлении рекламации	Должность, фа-милия и под-пись лица, от-ветственного за устранение неисправности	Приме-ч ания

7.4 Итоговые сведения за годовой период эксплуатации гигрометра должны заноситься в таблицу 4.

Таблица 4

Годы	Количество часов	Итого с начала эксплуатации	Подпись ответственного лица
		эконы у штации	ответенвенного лица

7.5 При обнаружении неисправности составляется акт в соответствии с таблицами 3, 4 и п. 7.2., в котором указывается характер неисправности. Акт подписывается комиссией, утверждается главным инженером

предприятия – потребителя и направляется в инженерно-сервисный центр предприятия—изготовителя.

тел. 8(3955) 507-737, e-mail: service@okba.ru.

7.6 Реквизиты предприятия-изготовителя:

Россия, 665821, Иркутская область, город Ангарск, микрорайон Старо-Байкальск, улица 2-я Московская, 33A. ООО "НПП ОКБА", сайт: www.okba.ru, e-mail: mail@okba.ru. Отдел маркетинга, продаж и логистики: тел. 8(3955) 507-760, 507-758, 507-736, e-mail: market@okba.ru.

8 СВЕДЕНИЯ ОБ УПАКОВЫВАНИИ

			ителем согласно требованиям,
предус	смотренным в дейст	твующей технической	документации.
	должность	подпись	ФИО
	"	_ Γ.	
		ГВО О ПРИЕМКЕ	777 14464206 2010
			077-14464306-2018, заводской
			соответствии с обязательными
требов	аниями государст	гвенных стандартов,	действующей технической
докум	ентациеи и признан	годным для эксплуата	ации.
докум	•	•	ации. на газе
•	•	оометра произведена н	
•	9.2 Настройка гигр	оометра произведена н	
•	9.2 Настройка гигр	оометра произведена н ии 500 кПа.	
•	9.2 Настройка гигр минальном давлени	оометра произведена н ии 500 кПа.	ла газе
•	9.2 Настройка гигр минальном давлени	оометра произведена н ии 500 кПа.	ла газе
•	9.2 Настройка гигроминальном давлени Дата выпуска "_	оометра произведена н ии 500 кПа.	ла газе
•	9.2 Настройка гигроминальном давлени Дата выпуска "_	оометра произведена н ии 500 кПа. 	ла газе

10 СВЕДЕНИЯ О ПОВЕРКЕ

- 10.1 Метрологическая служба предприятия аккредитована на право поверки средств измерений и зарегистрирована в реестре аккредитованных метрологических служб.
- 10.2 Поверка гигрометра производится в соответствии с методикой поверки МИ 2947-2005. Рекомендуемая периодичность поверки один раз в год.
 - 10.3 Данные о поверке гигрометра вносятся в таблицу 5.

Таблица 5

		Должность фамилия	Подпись, дата и клеймо
Пото норожи	Результат поверки	представителя	представителя
Дата поверки	(годен, негоден)	метро-логической	метро-логической
		службы	службы

ПРИЛОЖЕНИЕ А Значение влажности газов в разных единицах измерений

(Справочное)

Точка росы, ⁰ С	МЛН ⁻¹	$M\Gamma/M^3$	Точка росы, ⁰ С	МЛН⁻¹	$M\Gamma/M^3$
-70	2,5794	1,932	-24	689,2	516,9
-68	3,4635	2,594	-22	838,9	629,17
-66	4,6245	3,464	-20	1018,0	763,5
-64	6,141	4,6	-19	1120,0	840,2
-62	8,1114	6,075	-18	1232,0	924,23
-60	10,66	7,984	-17	1353,0	1017,29
-58	13,94	10,437	-16	1486,0	1114,78
-56	18,13	13,58	-15	1630,0	1225,56
-54	23,46	17,584	-14	1787,0	1343,609
-52	30,26	22,66	-13	1957,0	1471,42
-50	38,82	29,08	-12	2143,0	1611,278
-48	49,587	37,14	-11	2344,0	1762,406
-46	63,07	47,239	-10	2563,0	1927,06
-44	79,88	59,83	-9	2800,0	2105,263
-42	100,76	75,47	-8	3057,0	2298,496
-40	126,61	94,83	-7	3335,0	2507,518
-38	158,46	118,69	-6	3636,0	2733,83
-36	197,58	148,0	-5	3962,0	2978,94
-34	245,45	183,84	-4	4314,0	3243,609
-32	343,81	257,85	-3	4694,0	3529,32
-30	374,4	280,8	-2	5105,0	3838,34
-28	460,7	345,52	-1	5548,0	4171,42
-26	564,4	423,3	0	6027,0	4531,57