

601657, г. Александров, Владимирской обл.,

ул. Гагарина, дом 2.

т./факс: +7 (49244) 98-666, +7 (495) 658-5410,

http://www.avantazh.com

e-mail: avantag-al@mail.ru, info@centrsnab.ru

Барьеры искробезопасности **БИБ-01TS-ГР** (далее барьеры) предназначены для обеспечения искробезопасности электрических цепей термосопротивлений. Они применяются в системах контроля, регулирования, сигнализации, аварийной защиты и управления технологическими процессами на взрыво-пожароопасных участках, где могут присутствовать взрывоопасные смеси газов, пары нефтепродуктов, угольная пыль и др. взрыво-пожароопасные среды. Барьеры имеют вид взрывозащиты **«искробезопасная электрическая цепь»** и маркировку взрывозащиты **[Exia]IIB** / **[Exia]IIC**.

Барьеры предназначены для работы с ТС (термо-сопротивлениями М100, Р+100), расположенными в «опасной» зоне. Подключение ТС осуществляется по 3-х проводной схеме. **БИБ-01TS-ГР** осуществляет преобразование значений температуры в унифицированный выходной сигнал 4-20мА. Диапазоны преобразования значений температур 0-200°С. В барьере реализовано гальваническое разделение цепей **ПИТАНИЕ - ТС - ВЫХОДНОЙ СИГНАЛ 4-20мА**. На лицевой панели **БИБ-01TS-ГР** с помощью светодиодов отображена индикация наличия напряжение питания и выходного сигнала 4-20мА.

2. Исполнения барьеров.

- По защищенности от воздействия агрессивной среды барьеры относятся к коррозионностойким изделиям и обеспечивают возможность эксплуатации в условиях 3 (контакт с атмосферой помещений КИПиА).
- По защищенности от воздействия окружающей среды барьеры имеют пылезащищенное исполнение со степенью защиты IP30 по ГОСТ 14254-96.
- По стойкости к механическим воздействиям барьеры вибропрочны по ГОСТ 12997, исполнение №1 (типовое размещение на промышленных объектах).
- По устойчивости к климатическим воздействиям барьеры соответствуют виду климатического исполнения УХЛ, категории размещения 4 по ГОСТ 15150-75, но для работы при температуре от минус 20° С до плюс 60° С и значениях относительной влажности до 80% при температуре плюс 35° С.

3. Пример записи при заказе.

БИБ-01TS-ГР - барьер искробезопасности (БИБ); 01- 1 канал; TS термосопротивление; ГР- гальваническая развязка.

4. Основные параметры искробезопасности барьеров

Таблица 1			Маркировка взрывозащиты				
			[Exia	a]IIB	[Exi	a]IIC	
Типы	Максимальные выходные искробезопасные параметры						
барьеров искробезо- пасности	Uo, B	Io, mA	Со,мкф	Lo,мГн	Со,мкф	Lo,мГн	
БИБ -01TS- ГР	7,88	394	12,0	0,3	4,0	0,06	

де

- Um 250B, максимальное напряжение, которое может быть приложено к искроопасному входу барьера без нарушения искробезопасности.
- Uo максимальное выходное напряжение, которое может появиться на выходе барьера в случае приложения на входе Um.
- Іо максимальный выходной ток в искробезопасной цепи
- Co, Lo максимальные значения емкости и индуктивности подключаемых внешних устройств (включая линию передачи соответственно для различных групп.

Контактная площадка для подключения искроопасной цепи имеет зеленый цвет, для искробезопасной цепи синий.

5. Условия применения.

При применении барьеров необходимо соблюдать следующие условия:

- Барьеры имеют уровень взрывозащиты «особовзрывобезопасный» с видом взрывозащиты «искробезопасная электрическая цепь» и маркировку взрывозащиты [Exia] по ГОСТ 31610.0-2012(IEC 60079-0:2004) для взрывоопасных смесей категории IIC / IIB по ГОСТ 30852.11-2002 (МЭК 60079-12:1978) и устанавливаются вне взрывоопасных зон.
- К выходным соединительным контактным зажимам барьеров с маркировкой «искробезопасная цепь» допускается подключение только взрывозащищенного электрооборудования с видом взрывозащиты «искробезопасная цепь», имеющего сертификат соответствия Системы сертификации ГОСТ ТР ТС и для взрывоопасных сред категории IIC.
- Электрические параметры искробезопасного электрооборудования, подключаемого к соединительным контактным зажимам барьеров с маркировкой "искробезопасная цепь", включая параметры соединительных кабелей и проводов, не должны превышать значений, приведенных в таблицах 1.
- К монтажу и эксплуатации барьеров допускается персонал, имеющий соответствующую квалификацию и аттестованный для его обслуживания.
- Монтаж барьеров, включая прокладку соединительного кабеля (линии связи) во взрывоопасной зоне производить в соответствии с требованиями ГОСТ 30852.13-2002 (МЭК 60079-14:1996), гл. 7.3 ПУЭ.

6. Параметры надежности.

- Средний срок службы барьеров не менее 10 лет.
- Средняя наработка на отказ при соблюдении правил технического обслуживания и применения составляет не менее 100 000 часов.
- Срок сохраняемости барьеров не менее одного года при соблюдении условий хранения и транспортировки.

7. Конструктивные параметры.

- Габаритные размеры барьеров составляют, мм 22,6х114,5х99
- Масса барьера не более, кг 0,25

8. Комплект поставки.

- Барьер искробезопасности **БИБ-01TS-ГР** 1 шт.
- Паспорт совмещенный с техническим описанием и инструкцией по эксплуатации

9. Основные технические характеристики барьеров

1. Напряжение питания, В	18-36
2. Кол-во каналов	1
3. Потребляемая мощность, Вт	≤3
4. Подключение ТС	3-х проводная схема
5. Температурный диапазон, ^о С	0-200
6. Выходной сигнал, мА	4-20
7. Выходная нагрузочная способность, Ом	≤ 500
8. Температура эксплуатации, ^о С	-20+60
9. Гальваническая изоляция, кВ/60с	2,0

10. Общее устройство и принцип работы.

Конструктивно барьеры выполнены в пластмассовом корпусе прямоугольной формы, внутри которого размещена печатная плата с элементами электронного монтажа. Конструкция корпуса барьеров позволяет размещать их на 35мм рейку стандарта DIN. Искробезопасность входных цепей барьеров достигается соответствующим выбором номиналов защитных элементов, обеспечением запаса по току и мощности и надежным заземлением общих проводов.

Барьеры включают в себя элементы, ограничивающие напряжение и ток до искробезопасно величины и элементы ,обеспечивающие запас по допустимому току и мощности на защитны элементах.

Стабилитроны VD и резисторы R служат для ограничения напряжения и тока в искробезопасной цепи. При случайном попадании на вход высокого напряжения происходит срабатывание стабилитронов, что приводит к шунтированию искробезопасной цепи. При этом ток в ней не может превышать значения, равного

$$I = rac{U_{ ext{ct}}^{ ext{II}}}{R}$$
 , где $U_{ ext{ct}}^{II}$ -напряжение ограничения цепи защиты.

Вставки плавкие и элементы электронной защиты служат для ограничения времени протекания тока через цепи при перегрузке взрывоопасных входов.

Параметры входных предохранительных цепей выбраны таким образом, что в любом переходном режиме они срабатывают быстрее, чем выйдут из строя элементы барьеров.

Барьеры подключаются к устройствам, имеющим источники питания с суммарным напряжением до 250В и устанавливается вне взрывоопасных помещений.

Интерфейс с внешним миром обеспечен посредством клеммных блоков, принимающих провода сечением до 2,5 мм2, состоят из двух частей:

- Вилка, установленная на печатной плате.
- Штекер, соответствующий вышеуказанным вилкам.

Данное решение позволяет без затруднений проводить регламентные или сервисные

работы по замене барьера, при этом нет необходимости демонтировать штекер, а цветовое различие клемм поможет исключить неправильное подключение, но при этом необходимо первоначально обесточить входные и выходные цепи.

11. Подготовка к работе и порядок работы.

- Установить барьер на монтажную рельсу.
- Произвести коммутацию внешних устройств согласно схеме подключения, указанной на боковой части барьера.
- Дальнейшую работу производить согласно документации на подключенный вторичный прибор.

12. Проверка технического состояния.

Проверка технического состояния барьера проводить периодически не реже двух раз в год и перед установкой на объект, а также в случае выявления неисправностей, в лабораторных условиях в объеме и последовательности, изложенной в п.7.4. ПУЭ

Условия проверки

Проверку производить при:

- температура окружающего воздуха +20+- 5°C
- относительная влажность от 30 до 80%
- атмосферное давление от 86 до 106,7 кПа
- отсутствие внешних электрических и магнитных полей и помех.

13. Монтаж барьеров.

При монтаже барьеров необходимо руководствоваться:

- Главой 3.4 ПЭЭП;
- Правилами устройства электроустановок ПУЭ;
- Настоящей инструкцией и другими руководящими документами.

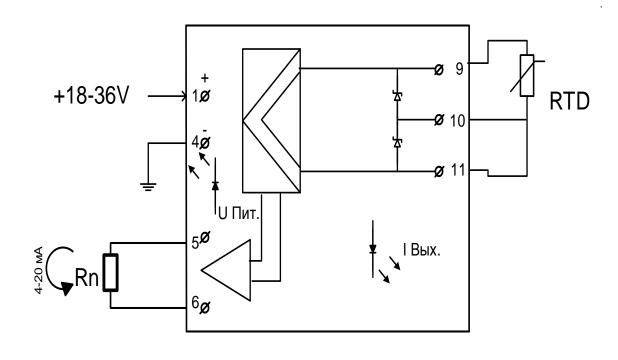
Осмотреть перед монтажом барьер. При этом обратить внимание на условные знаки взрывозащиты и предупредительные надписи, отсутствие повреждений оболочки, наличие заземляющих устройств, состояние клемм для подключения.

Производить монтаж в строгом соответствии со схемой внешних соединений, указанной в

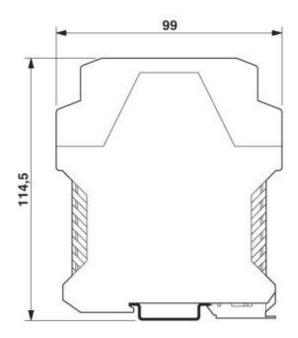
эксплуатационной документации. Максимальные индуктивность и емкость линии не должны превышать регламентированных величин.

Заземляющие клеммы барьера заземлить. Место присоединения заземления тщательно зачистить и покрыть слоем антикоррозийной смазки.

Проверить по окончании монтажа правильность соединения барьера.


14. Маркировка

На корпусе барьера нанесены следующие знаки и надписи:


- товарный знак предприятия-изготовителя и его наименование;
- знак сертификации;
- предприятие выдавшее сертификат;
- специальный знак взрывобезопасности;
- специальный знак обращения на территории ТС;
- название, тип прибора;
- интервал рабочих температур;
- максимальное напряжение прикладываемое к соединительным устройствам искроопасных цепей без нарушения искробезопасности (Um);
- параметры максимальных значений индуктивности и емкости, которые могут подключаться без нарушения искробезопасности (Lo, Co);
- параметры выходных цепей (Uo, Io);
- серийный номер и год выпуска;
- схема, условно отражающая устройство барьера, обозначение и нумерацию входных и выходных соединительных устройств

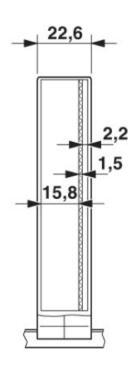

15.Схема подключения БИБ-01TS-ГР

Схема подключения БИ-Pt100(M100)

16. Габаритный чертеж барьеров.

