Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева»

УТВЕРЖДАЮ Директора ФГУП «ВНИМ им Д.И. Менделеева» А.Н. Пронин Мл. 2017 г.

Государственная система обеспечения единства измерений

ГЕНЕРАТОРЫ ГАЗОВЫХ СМЕСЕЙ ГГС-У

Методика поверки

МП-242-2168-2017

Заместитель руководителя научно- исследовательского отдела Государственных эталонов в области физико-химических измерений ФГУП "ВНИИМ им Д.И. Менделеева" А.В. Колобова

Инженер А.А. Нечаев

Санкт-Петербург 2017 г.

Настоящая методика поверки распространяется на все модификации генераторов газовых смесей ГГС-У (далее — генераторы) находящиеся в эксплуатации, и устанавливает методы их первичной поверки до ввода в эксплуатацию и после ремонта, и периодической поверки в процессе эксплуатации.

Допускается проведение поверки отдельных измерительных каналов расхода из состава комплекса в соответствии с заявлением владельца, с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.

Интервал между поверками - один год.

1.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, приведенные в таблице

Таблица 1.

	II.	Проведение операции		
Наименование операции	Номер пункта инструкции по поверке	при Первичной поверке	Периоди- ческой поверке	
1.Внешний осмотр	6.1	Да	Да	
2.Опробование	6.2	Да	Да	
2.1 Проверка общего функционирования	6.2.1	Да	Да	
2.2 Проверка герметичности	6.2.2	Да	Да	
3. Подтверждение соответствия программного обеспечения	6.3	Да	Да	
4 Определение метрологических характеристик: 4.1 Определение относительной погрешности измерения расхода по каналам 4.2 Определение абсолютной погрешности	6.4 6.4.1 6.4.2	Да Да	Да	
измерения температуры в термостате 4.3 Определение относительной погрешности заданного значения объемной (молярной) доли и массовой концентрации компонента в смеси на выходе генератора	6.4.3, 6.4.4	Да	Да	

1.2 Если при проведении той или иной операции поверки получен отрицательный результат, дальнейшая поверка прекращается.

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны быть выполнены операции и применены средства поверки, указанные в таблице 2.

Таблица 2.

Номер пункта Наименование основного и вспомогательного средства поверки, номер документа, требования к СИ, основные технические и (или) метрологические характеристики поверке

Прибор комбинированный Testo-622, диапазон измерений относительной влажности от 0 до 100%, пределы допускаемой абсолютной погрешности ±2,0 %, диапазон измерений температуры от –10 до +60 °C, пределы допускаемой абсолютной погрешности ±0,4 °C, диапазон измерений атмосферного давления от -

Horran	
Номер	II.
пункта	Наименование основного и вспомогательного средства поверки, номер документа,
НТД по	требования к СИ, основные технические и (или) метрологические характеристики
поверке	200 1200 II
	300 до 1200 гПа, пределы допускаемой абсолютной погрешности ±3,0 гПа
	Трубка медицинская поливинилхлоридная (ПВХ) по ТУ6-01-2-120-73, 6×1,5 мм
	Азот газообразный особой чистоты сорт 1-й по ГОСТ 9293-74.
	Редуктор баллонный газовый одноступенчатый БКО-50-4 соответствует ГОСТ 13861.
	Манометр эталонный МО, кл. 0,4, верхний предел измерений 0,25 МПа.
6.2.2	Тройник со штуцерами на трубки 4×1,5 и 6×1,5 мм.
	Калибратор расхода газа Cal=Trak SL-800 (рег. № 37946-08), диапазон измерений
6.4.1	от 2 см ³ /мин до 50 дм ³ /мин, пределы допускаемой относительной погрешности
0.1.1	измерений ± 0.2 %.
	Термометр сопротивления платиновый низкотемпературный ТСПН-4М
	(регистрационный номер 11567-88) в комплекте с преобразователем сигналов ТС и
6.4.2	ТП ТЕРКОН (рег. № 23245-08), диапазон температур от 0 до +156 °C, пределы
	допускаемой абсолютной погрешности ±0,01 °C.
	Эталонные комплексы аппаратуры для передачи размера единиц молярной доли и
	массовой концентрации компонентов в газовых средах, входящие в состав
	вторичного эталона по ГОСТ 8.578-2014.
	Газовые смеси государственные стандартные образцы (ГСО) – эталоны сравнения
	по ГОСТ 8.578-2014 состава СО/N ₂ (№ 10768-2016), NO ₂ /N ₂ (№10774-2016)
6.4.3	(перечень газовых смесей представлен в приложении Б)
6.4.4	Эталоны сравнения – источники микропотоков газов (NO_2 и SO_2) по ГОСТ 8.578-
0.4.4	2014 (перечень ИМ представлен в приложении В)
	Газовые смеси – рабочие эталоны 0, 1 и 2-го разрядов, входящие в комплект
	_
	генератора Источники микропотока – меры 0-го и 1-го разряда, входящие в комплект
	генератора

Примечание: Допускается использовать средства поверки, не приведенные в перечне, но обеспечивающие определение (контроль) метрологических характеристик поверяемых средств измерений с требуемой точностью.

2.2 Средства поверки, приведенные в п.2.1, должны иметь действующие свидетельства о поверке.

3.ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 Помещение, в котором проводится поверка, должно быть оборудовано приточновытяжной вентиляцией.
- 3.2 При работе с газовыми смесями в баллонах под давлением должны соблюдаться "Правила устройства и безопасной эксплуатации сосудов, работающих под давлением", утвержденные Госгортехнадзором.
- 3.3 При проведении поверки должны соблюдаться требования техники безопасности, приведенные в п.п. 2.1.2 руководства по эксплуатации на генератор ШДЕК.418313.109РЭ.

4 УСЛОВИЯ ПОВЕРКИ

4.1 При проведении поверки соблюдаются следующие условия: температура воздуха в помещении (293 \pm 5) К; атмосферное давление от 90,6 до 104,8 кПа; относительная влажность воздуха не более 80 %.

5 ПОДГОТОВКА К ПОВЕРКЕ

- 5.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- 1. Генератор должен быть подготовлен к работе в соответствии с руководством по эксплуатации ШДЕК.418313.109РЭ.
- 2. Калибратор расхода газа Cal=Trak SL-800, должен быть подготовлен к работе в соответствии с НТД на него, установить в настройках калибратора пересчет показаний на температуру 20 °C и давление 101,325 (стандартные условия).
- 3. Баллоны с газами должны быть выдержаны при температуре помещения, где проводится поверка, (293 ± 5) K:
 - баллон вместимостью $40 \pi 16 ч$;
 - баллон меньшей вместимости 8 ч;
 - 4. Должна быть включена приточно-вытяжная вентиляция.
- 5. Газоанализаторы и генераторы, входящие в эталонные комплексы вторичного эталона должны быть подготовлены к работе в соответствии с нормативной документацией на них.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

- 6.1 Внешний осмотр
- 6.1.1 При внешнем осмотре должно быть установлено:
- соответствие маркировки и комплектности генератора требованиям НТД;
- отсутствие внешних повреждений, влияющих на работоспособность прибора;
- четкость всех надписей на лицевой панели прибора;
- исправность органов управления, настройки (кнопки, переключатели, тумблеры).

Генератор считается выдержавшим внешний осмотр удовлетворительно, если он соответствует всем перечисленным выше требованиям.

- 6.2 Опробование
- 6.2.1 Проверка общего функционирования

При проверке общего функционирования включить генератор, прогреть в течение 30 мин. Произвести фиксацию нуля по всем каналам. (см. РЭ на генераторы). На сенсорном экране значения расхода по всем каналам должны быть близкие к "0".

6.2.2 Проверка герметичности

Проверка герметичности газовой системы генератора проводится следующим образом:

- 1) Для модификации генераторов ГГС-УР (генератор разбавительного типа):
- включить генератор;
- -- прогреть генератор в течение 30 мин;
- выбрать ручной режим работы;
- произвести фиксацию нулевых показаний по всем каналам (согласно РЭ на генераторы);
- подсоединить редуктор к баллону с азотом (воздухом, гелием), а выход редуктора к входу канала 3 генератора, остальные входы и выходы генератора закрыть заглушками;
 - редуктором установить входное давление $(2,0\pm0,5)$ кгс/см²;
 - задать максимально возможный расход по всем каналам (согласно РЭ на генераторы);
 - -включить подачу расхода по 3 каналу (согласно РЭ на генераторы).

Генератор газовых смесей ГГС-УР считается выдержавшим испытание, если через 20 мин показания генератора по каналу 3 не превышают $1,0\,\mathrm{cm}^3/\mathrm{muh}$.

- 2) Для модификации генераторов ГГС-УТ (термодиффузионный генератор):
- подсоединить редуктор к баллону с азотом (воздухом, инертным газом), а выход редуктора к выходному штуцеру «ВЫХОД» генератора; через тройник подсоединить к выходу генератора образцовый манометр с пределом измерения 0,25 МПа (2,5 кгс/см²);
 - закрыть заглушкой вход генератора;
- установить с помощью редуктора давление в газовой системе генератора $(0,15\pm0,01)$ МПа $(1,5\pm0,1)$ кгс/см²), герметично перекрыть линию подачи газа от редуктора к генератору.

Зафиксировать показания образцового манометра. Через 10 мин. повторно зафиксировать показания манометра.

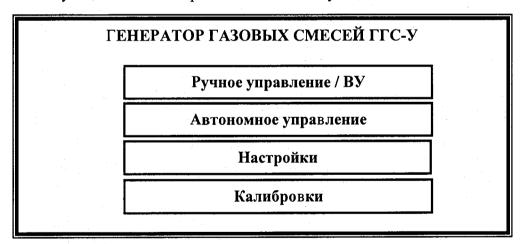
Генератор газовых смесей ГГС-УТ считается выдержавшим испытание, если спад давления не превышает $0.01~\mathrm{M\Pi a}~(0.1~\mathrm{krc/cm^2})$.

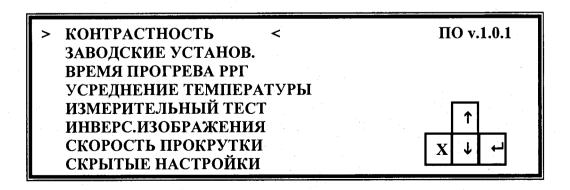
- 3) Для модификации генераторов ГГС-У (комбинированный генератор):
- -включить генератор
- -прогреть генератор в течение 30 мин
- -выбрать «Режим работы разбавление»
- -проверить герметичность так же как для мод ГГС-УР
- -вернуться в меню выбора режима и выбрать «Режим работы термодиффузионный»
- -проверить герметичность так же как для мод ГГС-УТ

Генератор газовых смесей ГГС-У считается выдержавшим проверку, если в режиме разбавления через 20 мин показания индикатора по каналу 3 не превышают $1.0 \text{ см}^3/\text{мин}$, а в термодиффузионном режиме спад давления не превышает $0.01 \text{ МПа} (0.1 \text{ кгс/см}^2)$

6.3 Подтверждение соответствия программного обеспечения

Подтверждение соответствия ПО генераторов проводится для каждой модификации следующим образом:

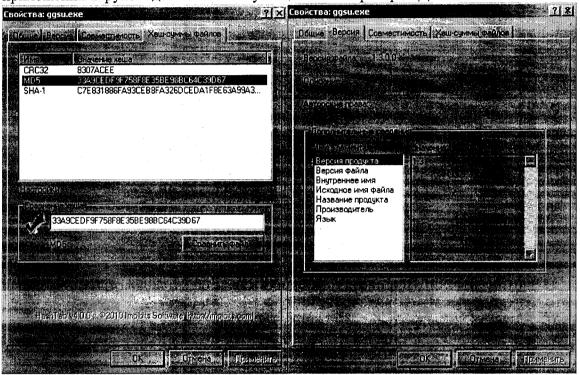

1) Проверка ПО для модификации ГГС-У (все модификации)


Проверяется номер версии встроенного ΠO и номер версии и контрольная сумма автономного ΠO .

а) Проверка номера версии встроенного ПО.

При включении установки ГГС-У на дисплее появляются следующее меню:

Для входа в настройки установки необходимо зайти в меню НАСТРОЙКИ нажатием соответствующего поля на экране. Появится следующее меню:



В правом верхнем углу экрана должен отображаться номер

б) Проверка контрольной суммы и номера версии автономного ПО

Номер версии автономного ПО отображается в свойствах исполняемого файла «ggsu.exe». Для просмотра номера версии необходимо найти в папке программы «ГГС-У» файл «ggsu.exe». Правой клавишей мыши нажать на ярлык файла, в выпадающем меню нажать пункт «Свойства файла». В открывшемся окне открыть вкладку «Версия». Номер версии файла будет являться номером версии автономного ПО.

Контрольная сумма автономного программного обеспечения проверяется по исполняемому файлу «ggsu.exe» с помощью программы HashTab или другой аналогичной по алгоритму MD5. Номер версии и контрольная сумма должны соответствовать указанному в приложении В руководства по эксплуатации на генератор ШДЕК.418313.109РЭ.

- 6.4 Определение метрологических характеристик
- 6.4.1 Определение относительной погрешности измерения расхода по каналам Оценивается разность показаний регуляторов расхода и калибратора расхода газа Cal=Trak SL-800 по каждому из каналов. При наличии в генераторе дополнительных калибровок по технически чистым газам, определение относительной погрешности измерения расхода проводится по всем калибровочным газам. Газ, по которому откалиброван каждый канал генератора, указан в паспорте на генератор.

Исследования проводятся следующим образом:

- 1) Подсоединить редуктор к баллону с газом;
- 2) Подать питание в генератор, прогреть прибор в течение 30 мин.
- 3) Зафиксировать ноль по всем каналам (см РЭ).
- 4) Подключить выход редуктора к входу исследуемого регулятора (канала), остальные входы заглушить.
 - 5) К выходу генератора подключить калибратор расхода газа Cal=Trak SL-800;
 - 6) Редуктором установить давление на входе калибратора (0.2 ± 0.05) МПа;
- 7) Установить следующие значения расхода через исследуемый регулятор: 10,20,30,40,50,60,70,80,90,100 % (в % от верхнего предела регулирования данного регулятора) и зафиксировать показания калибратора расхода газа Cal=Trak SL-800, соответствующие этим расходам. Повторить операцию при уменьшении расхода от 100 % до10. Число измерений в

каждой точке -3. Результаты измерений для каждого канала записать в таблицу по форме таблицы 3.

Таблица 3

Канал №	; Диап	азон расхода –см ³ /мин	
		Относительная	
	Показания калибратора расхода газа	$Q_{\Gamma} - Q_{c}$.100	

Qг, см³/мин при увеличении при уменьшении Сред- нее Полученное значение Допускае- мое значение	Показания генератора, Q _г , см ³ /мин	Показания калибратора расхода газа Cal=Trak SL-800, Qc, см ³ /мин			Относительная \underline{Q} погрешность	Выво-
		1 1	1 *	1 *		мое

Количество каналов измерения и регулирования расхода, диапазоны измерения и регулирования расхода по каналам, пределы допускаемой относительной погрешности генератора при измерении расхода должны соответствовать таблице 1 приложения Г.

6.4.2 Определение абсолютной погрешности измерения температуры в термостате (для модификаций ГГС-У, ГГС-УТ)

Проверка диапазона температур в термостате и определение предела абсолютной погрешности измерения температуры проводится с помощью образцового платинового термометра сопротивления ТСПН-4М, подключенного к преобразователю сигналов ТС и ТП прецизионного «ТЕРКОН», в следующей последовательности:

- а) установить термометр сопротивления в держатель для источников микропотоков и поместить в термостатируемую камеру генератора, закрутить крышку держателя;
 - б) установить расход газа через термостат 100 см³/мин (см. РЭ на генераторы)
 - в) установить температуру термостата 30 °C;
- г) контролировать ход нагрева по показаниям на дисплее и через 90 мин после окончания переходного процесса зафиксировать показания термометра Тт и генератора Тг и определить абсолютную погрешность измерения температуры по формуле:

$$\Delta(t)_1 = T_T - T_\Gamma, ^{\circ}C$$
 (1)

д) Повторить операции в) и г) для температур 60, 90, 120 °C, определив абсолютные погрешности $\Delta(t)_2$ - $\Delta(t)_4$.

Генератор считается выдержавшим проверку, если наибольшее значение абсолютной погрешности $\Delta(t)_1$ - $\Delta(t)_2$ не превышает \pm 0,1 °C, $\Delta(t)_3$ - $\Delta(t)_4$ не превышает \pm 0,2 °C.

6.4.3 Определение относительной погрешности заданного значения объемной (молярной) доли (для мод ГГС-У, ГГС-УР) в смеси на выходе генератора

Определение относительной погрешности заданного значения объемной (молярной) доли целевого компонента проводится методом компарирования ГС, полученных при помощи эталонного генератора, входящего в состав эталонных комплексов и генератора газовых смесей ГГС-У (мод ГГС-У, ГГС-УР). При этом расхождение концентраций в ГС не должно превышать 15 %.

Компаратором служат газоанализаторы, входящие в состав эталонных флуоресцентного, хемилюминесцентного и электрохимического комплексов аппаратуры для передачи размера единиц молярной доли и массовой концентрации компонентов в газовых средах, входящих в состав вторичного эталона по ГОСТ 8.578-2014. Определение относительной погрешности проводится в соответствии с методикой, приведенной документации на эталонные установки входящие в состав вторичного эталона.

Определение погрешности проводится для химически активных и серосодержащих газов (NO, NO₂, H₂S, SO₂, NH₃, HCl, Cl₂, CH₃SH, C₂H₅SH и т.п.) по диоксиду азота (NO₂), так как

диоксид азота обладает наиболее ярко выраженными химически активными свойствами. Для химически неактивных (углеводородов C2-C8, галогеносодержащих, инертных) газов (CO, CO₂, H_2 , O_2 , CH_4 , C_2H_2 , C_2H_4 , C_2H_6 , C_3H_8 , и т.п.) определение погрешности проводится по оксиду углерода (CO).

В качестве исходных газовых смесей для генераторов газовых смесей мод. ГГС-У, ГГС-УР используют бинарные газовые смеси – ГСО - ПГС 0-го, 1-го, 2-го разряда (по ТУ 6-16-2956-01) (перечень приведен в приложении Б).

В качестве газа-разбавителя для генераторов мод. ГГС-У, ГГС-УР и генератора эталонных установок необходимо использовать азот высокой чистоты (особой чистоты по ГОСТ 9293-74 или ТУ 2114-004-05798345-2009, ТУ 6-21-39-96), воздух (по ТУ 6-21-5-82).

В качестве аттестованных газовых смесей для эталонного генератора используют газовые смеси — эталоны сравнения в баллонах под давлением по ГОСТ 8.578-2014. Перечень газовых смесей — эталонов сравнения указан в приложении Б.

Последовательно задают в соответствии с руководством по эксплуатации генератора ШДЕК 418313.109 не менее 2-х Γ С с объемной долей целевого компонента, соответствующей (30 – 90) % диапазона измерений газоанализаторов-компараторов, входящих в состав эталонных комплексов.

Полученную на генераторе аттестуемую газовую смесь подают на вход газоанализатора-компаратора.

Определение объемной (молярной) доли целевого компонента в газовой смеси на выходе генераторов проводят методом компарирования с использованием комплекса для измерения молярной доли и массовой концентрации NO, NO₂, NH₃, SO₂, H₂S и др. в газовых смесях на основе химически активных газов и комплекса для измерения молярной доли CO, CO₂, CH₄ и др. в бинарных и многокомпонентных газовых смесях, входящих в состав вторичного эталона по ГОСТ 8.578-2014. Число измерений для каждой концентрации – в соответствии с РЭ на каждый эталонный комплекс.

Проводят расчет относительной погрешности компарирования (So) в соответствии с РЭ на каждый эталонный комплекс.

Если So превышает значение, указанное в РЭ, то необходимо провести дополнительно 5 новых измерений и снова провести его расчет.

Рассчитывают значение объемной (молярной) доли C_{δ} , % определяемого компонента в каждой ГС на выходе эталонного комплекса в соответствии с РЭ.

Рассчитывают относительную погрешность поверяемого генератора (δ_0 , %) для каждого задаваемого значения объемной (молярной) доли целевого компонента по формуле:

$$\delta_0 = \frac{C_3 - C_0}{C_0} \cdot 100 \tag{2}$$

 $^{C_{3}}\,$ - значение объемной (молярной) доли компонента на выходе генератора, рассчитанное на основании значений расходов исходного газа и газа-разбавителя, отображаемых на дисплее, %.

 $^{C}{}_{\partial}$ - действительное значение объемной (молярной) доли целевого компонента в ГС на выходе испытываемого генератора, определенное при помощи установок эталонного комплекса, %.

Относительная погрешность генератора не должна превысить значений, приведенных в таблице 1 приложения Д для каждого целевого компонента, используемого при компарировании.

6.4.4 Определение относительной погрешности заданного значения массовой концентрации целевого компонента в смеси на выходе генераторов мод ГГС-У и ГГС-УТ.

Определение относительной погрешности генераторов проводят методом компарирования с использованием комплекса для измерения молярной доли и массовой

концентрации NO_2 , NH_3 , SO_2 , H_2S и др. в газовых смесях на основе химически активных газов $X_{\rm H}$ 1.456.446, входящего в состав в состав вторичного эталона по ГОСТ 8.578-2014.

Определение относительной погрешности проводится в соответствии с методикой, приведенной в документации на эталонные комплексы по следующим целевым компонентам: NO₂, SO₂.

В качестве газа-разбавителя для генераторов мод ГГС-У, ГГС-УТ и генератора эталонных установок необходимо использовать азот высокой чистоты (особой чистоты по ГОСТ 9293-74 или ТУ 2114-004-05798345-2009, ТУ 6-21-39-96), воздух (по ТУ 6-21-5-82). В эталонном генераторе используют ИМ газов и паров — эталоны сравнения по ГОСТ 8.578-2014 приведенные в приложении В. В генераторы газовых смесей ГГС мод ГГС-У, ГГС-УТ последовательно устанавливаются ИМ — меры 0 и 1-го разряда (перечень ИМ приведен в приложении В).

Последовательно задают в соответствии с руководством по эксплуатации на поверяемый генератор не менее 2-х ГС с концентрациями, соответствующими (20 - 90) % диапазона измерений газоанализаторов-компараторов, входящих в состав эталонного комплекса.

Расчет массовой концентрации (X_3 в мг/м³) на выходе поверяемого генератора проводится по формуле:

$$X_{3} = \frac{G}{O_{m}} \tag{3}$$

где: G — производительность источника микропотоков ИМ, приведенная в паспорте на ИМ, мкг/мин;

 Q_n — объемный расход, дм³/мин, заданный на генераторе и приведенный к условиям 20 °C и 101.325 кПа.

Полученную на генераторе аттестуемую ГС подают на вход газоанализаторакомпаратора. В качестве аттестованной ГС используют ГС, полученную при помощи термодиффузионного генератора ГГС-Т, входящего в состав эталонного комплекса, в комплекте с ИМ газов и паров - эталонами сравнения по ГОСТ 8.578-2014.

Выполняют измерения и расчеты в соответствии с методикой измерений на эталонный комплекс.

Рассчитывают относительную погрешность поверяемого генератора по термодиффузионному каналу, δ , %, для каждой задаваемой концентрации по формуле:

$$\delta = \frac{X_s - X_o}{X_o} \cdot 100 \tag{4}$$

 X_3 - значение объемной доли компонента в ГС, мг/м 3 , рассчитанное по формуле (3)

 X_{∂} - действительное значение объемной доли компонента в ГС, определенное на эталонном комплексе, мг/м³.

Относительная погрешность генератора не должна превысить значений, приведенных в таблице 2 приложения Д для каждого целевого компонента, используемого при компарировании.

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТА ПОВЕРКИ

- 7.1~При проведении поверки генератора составляется протокол, в котором указывается соответствие генератора предъявляемым к нему требованиям. Форма протокола приведена в приложении ${\bf A}$.
 - 7.2 Генератор, удовлетворяющий требованиям настоящей методики, признается годным.
- 7.3 Положительные результаты поверки оформляются свидетельством о поверке установленной формы.

 $7.4~\Pi$ ри отрицательных результатах поверки, генератор к применению не допускается, на него выдается извещение о непригодности с указанием причины. 1

¹На территории РФ оформление свидетельства о поверке и извещения о непригодности осуществляется в соответствии с Приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. № 1815 "Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке"

Протокол поверки

Генератора газовых смесей ГГС-У

Зав. номе	ер генератора_	· · · · · · · · · · · · · · · · · · ·				
Дата вып	уска		· · · · · · · · · · · · · · · · · · ·			
Организа	ция, представі	ившая генератор	о на поверн	су		<u>.</u>
Условия	поверки: темп	ература окружа	ющего воз,	духаК		
атмосфер	ное давление		· .	кПа		
		ть				
	поверки					
Поверка	произведена в	соответствии с	документо	м «Генераторы	газовых смесей	іГГС-У.
І етодика пове	ерки. МП-242-	216 8- 2017»				
		Резул	льтаты по	верки		
1. Резуль	таты внешнего	осмотра				
2. Резуль	таты опробова	ния:				
Проверка	а общего функ	ционирования			· · · · · · · · · · · · · · · · · · ·	-
Герметич	ность	4.	· · · · · · · · · · · · · · · · · · ·			
3. Резуль	таты подтверж	дения соответс	твия прогр	аммного		
беспечения				······································		
4. Резуль	таты определе	ния метрологич	еских хара	ктеристик		
4.1 Резул	ьтаты определ	ения относителі	ьной погре	ешности измерен	ния расхода по	каналам
				Относит	ельная	:
_		змерителя расхо		погрешность $\frac{Q_{\Gamma}-Q_{c}}{100}$,		
Токазания енератора,	Cal=Trak SL-800, Qc, см ³ /мин			Q_c		Выво-
_г , см ³ /мин	при увеличе-	при уменьше-	Сред-	Полученное значение	Допускае- мое	ды
<u>-cumum</u>	нии	нии			значение	
	1				1	

4.3 Результаты определения относительной погрешности заданного значения объемной (молярной) доли компонента в смеси на выходе генератора

4.2 Результаты определения абсолютной погрешности измерения температуры в

термостате

	Заданное	Действительное	Отн. погрешн		
	значение	значение	значения	объемной	
	объемной	объемной	(молярной) доли компонента в смеси на выходе генератора, %		
Целевые	(молярной)	(молярной) доли			
компонен-	доли	целевого			Выводы
ты	компонента на	компонента на			
	выходе	выходе	Полученное	Допускаемое	
	генератора	генератора, C_{δ} ,	значение	значение	. *
	C_3 ,%	%			

3.4 Результаты определения относительной погрешности заданного значения массовой концентрации компонента в смеси на выходе генератора

Целевые	Заданное значение массовой	Действительное значение массовой концентрации	Отн. погрешн значения концентрации смеси на выход		
компонен- ты	концентрации компонента на выходе генератора, X_3 , мг/м 3	целевого компонента на выходе генератора, X_{∂} , мг/м 3	Полученное значение	Допускаемое значение	Выводы

4.Заключение		
(соответствует или не	е соответствует требованиям, прив	веденным в данной методике)
Поверитель		
(подпись)		
Дата поверки ""	20 г.	

1. Перечень газовых смесей – эталонов сравнения по ГОСТ 8.578-2014, применяемых совместно с эталонными комплексами, при поверке генераторов газовых смесей ГГС-У

№ п/п	Тип эталона	Определяемый и фоновый компоненты	Молярная доля компонента, %		Относительная расширенная неопределенность $(U)^*$ при коэффициенте охвата $k=2\ \%$
1	ГСО 10768- 2016	СО+N2(воздух)	0,1	1,0	0,25
2	ГСО 10768- 2016	СО+N2(воздух)	1,0	10,0	0,20
3	ГСО 10774- 2016	NO ₂ +N ₂ (воздух)	0,1	1,0	0,25
4	ГСО 10774- 2016	NO ₂ +N ₂ (воздух)	0,01	0,1	0,5

Примечание: Возможность использования ЭС определяется сроком годности ЭС, который указывается в паспорте на ЭС.

2. Перечень газовых смесей в баллонах под давлением - рабочих эталонов (ТУ 6-16-2956-01, ТУ 0272-013-20810646-2014) используемых в качестве исходных газовых смесей при

поверке генераторов газовых смесей ГГС-У

Номер ГСО	Компонентн ый состав	Размерность	Номинальное значение объемной (молярной) доли	Пределы допускаемой относительной погрешности, %	Разряд
10546-2014	NO ₂ +N ₂ (воздух)	%	$1 \cdot 10^{-3} - 0,1$	1,5	1
10546-2014	NO ₂ +N ₂ (воздух)	%	0,1 - 1	0,6	1
10546-2014	NO ₂ +N ₂ (воздух)	%	1 - 10	0,4	1
10547-2014	NO ₂ +N ₂ (воздух)	%	$1 \cdot 10^{-3} - 0.1$	5	2
10547-2014	NO ₂ +N ₂ (воздух)	%	0,1 - 1	3	2
8741-2006	NO ₂ +N ₂ (воздух)	млн ⁻¹	101 - 500	4	1
8742-2006	NO ₂ +N ₂ (воздух)	млн ⁻¹	501 - 5000	3	1
10331-2013	NO ₂ +N ₂ (воздух)	%	0,0010 - 0,10 $0,10 - 0,050$ $0,5 - 10,0$	-15,15·X+4,015 -2,5·X+2,75 -0,046·X+1,523	1
9744-2011	СО+воздух	млн ⁻¹	100 - 190	2	1
9745-2011	СО+воздух	%	0,100 - 0,190	2	1
10530-2014	СО+воздух	%	$1 \cdot 10^{-3} - 0,1$	1,5	0
10530-2014	СО+воздух	%	0,1 - 1	0,6	0

Номер ГСО	Компонентн ый состав	Размерность	Номинальное значение объемной (молярной) доли	Пределы допускаемой относительной погрешности, %	Разряд
10530-2014	СО+воздух	%	1 - 10	0,4	0
10531-2014	СО+воздух	%	$1 \cdot 10^{-3} - 0,1$	2,5	1
10531-2014	СО+воздух	%	0,1 - 1	1,5	1
10531-2014	СО+воздух	%	1 - 10	1	1
10532-2014	СО+воздух	%	$1 \cdot 10^{-3} - 0.1$	5	2
10532-2014	СО+воздух	%	0,1 - 1	3	2
10532-2014	СО+воздух	%	1 - 10	2,5	2

1. Эталоны сравнения – источники микропотоков газов по ГОСТ 8.578-2014, применяемые совместно с эталонными комплексами, при поверке генераторов газовых смесей ГГС-У

Тип эталона	Компонент	Массовая концентрация, мг/м³, при расходе 20 – 180 дм³/ч	Производитель ность, мкг/мин, при температуре 30 – 60 °C	Границы относительной погрешности (Р=0,99), %
ИМ эталоны	NO ₂	0,017 - 0,330	0,05-0,10	±3,0
сравнения по ГОСТ	NO ₂	0,33 - 3,30	0,1 – 1,0	±2,0
8.578-2014	NO ₂	3,3 – 33,3	1,0 – 10,0	±1,5
	SO ₂	0,017 - 0,330	0,05-0,10	±3,0
	SO_2	0,33 - 3,30	0,1-1,0	±2,0
	SO_2	3,3 – 33,3	1,0 – 10,0	±1,5

Примечание 1: Возможность использования ЭС определяется сроком годности ЭС, который указывается в паспорте на ЭС.

2. Меры 1-го разряда - источники микропотоков газов и паров, применяемые совместно с

генераторами газовых смесей ГГС-У при проведении поверки

генераторами газовых смесеи ГГС-У при проведении поверки				
Условное обозначение ИМ	Вещество	Номинальное значение температуры, С ⁰	Конструктивное исполнение ИМ	Диапазон производительности ИМ, мкг/мин
ИМ00 – О – Г1	NO ₂	30,0	Γ1	0,1-3
ИМ01 – О – Г2	NO ₂	30,0	Γ2	0,3 – 6
ИМ132 – М – Д	NO ₂	30,0 35,0 40,0	Д Д Д	$ 0,1-0,5 \\ 0,2-1 \\ 0,3-2 $
ИМ133 – М – Г2	NO ₂	35,0 40,0	Γ2 Γ2	$0,3 - 10 \\ 1,0 - 15$
ИМ05 – М – А2	SO ₂	30,0 35,0 40,0	A2 A2 A2	0.1 - 6 $0.3 - 8$ $2 - 12$
ИМ113 – М – Г1	SO_2	30,0 35,0 40,0	Г1 Г1 Г1	0,1-3 $0,3-5$ $2-10$
ИМ114 – М – Г2	SO_2	30,0 35,0 40,0	Γ2 Γ2 Γ2	0,1-6 $0,3-8$ $2,0-12$
ИМ115 – М – Д	SO_2	30,0 35,0 40,0	Д Д Д	$0,1-0,5 \\ 0,2-1 \\ 0,3-2$
ИМ126-М-А1	SO ₂	30,0 35,0 40,0	A1 A1 A1	0.1 - 3 0.6 - 4 1 - 6

Примечание: Пределы допускаемой относительной погрешности (δ_0) ИМ (пределы допускаемой относительной погрешности значений производительности, воспроизводимых источником микропотока):

 $[\]pm$ 7 %, при производительности <1,0 мкг/мин,

^{± 5 %,} при производительности ≥1,0 мкг/мин.

Таблица 1 - Параметры расхода газовой смеси

	Значение			
Наименование характеристики	ГГС-У	ГГС-УР	ГГС-УТ	
Диапазон задания, и регулирования				
расхода газа (приведенный к температуре		4.		
20 °С и давлению 101,325 кПа), см ³ /мин ¹):			100 5000	
Канал 1	от 100 до 5000	от 300 до 5000	от 100 до 5000	
Канал 2	от 30,0 до 500,0	от 30,0 до 500,0		
Канал 3	от 2,00 до 40,00	от 2,00 до 40,00		
Номинальная цена наименьшего разряда	i i			
цифрового индикатора, см ³ /мин				
Канал 1	1	1	1	
Канал 2	0,1	0,1		
Канал 3	0,01	0,01	* <u>/</u>	
Объемный расход приготавливаемой	от 0,1 до 5,0	от 0,3 до 5,0	от 0,1 до 5,0	
газовой смеси, дм ³ /мин	01 0,1 Д0 5,0	01 0,5 Д0 5,0	0,1,2,0,0	
Пределы допускаемой относительной				
погрешности задания расхода газа, %:	* 4			
от 5 - 20 % от верхнего предела диапазона				
измерения и регулирования расхода ²⁾	±1,0			
св. 20 - 100 % от верхнего предела	1,0			
диапазона измерения и регулирования	±1,5			
расхода				

1) – количество каналов может изменяться от 2 до 4 в зависимости от технических требований к генераторам. Диапазоны измерения и регулирования расхода могут изменяться в зависимости от технических требований к генераторам.

^{2) –} для 1-го канала генераторов модификаций ГГС-У и ГГС-УТ пределы допускаемой относительной погрешности генератора при измерении расхода нормируются от 20 до 2 % от верхнего предела диапазона измерения и регулирования расхода.

ПРИЛОЖЕНИЕ Д (Справочное)
Таблица 1 - Метрологические характеристики генераторов ГГС-У (мод. ГГС-У, ГГС-УР)

		Пределы допускаемой	Пределы допускаемой отн.	
Целевые	Диапазон	относительной	погрешности заданного	
компоненты	воспроизведе		значения объемной доли	
	ния объемной	погрешности	•	
	(молярной)	аттестации исходной	(молярной) целевого	
	доли целевого	ΓC, %	компонента в смеси на	
	компонента,		выходе генератора, %	
	%			
Химически			$(X_B)_{B \to 0.02}$	
активные газы		менее ±2,0	$\pm \sqrt{4^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$	
$(NO, NO_2, NH_3,$	св 1,0·10 ⁻⁶ –		V A _B	
Cl ₂ , HCl, HF, F ₂ и	1,0·10 ⁻³ вкл		$\int_{\mathbb{R}^2} \Delta(X_B)_{P=100}^2$	
т.п.)		±(св 2,0 до 4,0 вкл)	$\pm \sqrt{5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$	
Серосодержащие				
газы (CH ₃ SH,		менее ±1,0	±2,5	
$C_4H_{10}S$, C_2H_5SH ,	св 1,0·10 ⁻³ –	±(св 1,0 до 2,0 вкл)	±3,0	
C_3H_8S , CS_2 , COS ,	10 вкл	±(св 2,0 до 3,0 вкл)	±4,0	
SO ₂ , H ₂ S и т.п.)		±(св 3,0 до 4,0 вкл)	±5,0	
202, 1120 11 1.111.)			$\Lambda(Y)$	
CO CO		менее ±2,0	$\pm \sqrt{3^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$	
C2 - C8			X_B	
углеводородные	св 1,0·10 ⁻⁶ –		$\int_{\Omega} \Lambda(X_n)_n$	
газы (C ₂ H ₂ , C ₂ H ₄ ,	1,0·10 ⁻³ вкл	±(св 2,0 до 3,0 вкл)	$\pm \sqrt{4^2 + (\frac{\Delta(X_B)_P}{X_P} \cdot 100)^2}$	
C_2H_6 , C_3H_6 , C_3H_8 ,	1,0.10 BKJ		Λ _B	
$C_4H_{10}, C_6H_{14},$			$\sum_{z} \Delta(X_B)_{B=100}$	
C_5H_{12} , C_6H_6 , C_7H_8 ,		±(св 3,0 до 4,0 вкл)	$\pm \sqrt{5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$	
С ₈ Н ₁₀ и т.п.)			, b	
Галогеносодержа		менее ±1,0	±2,5	
щие газы (CHClF ₂ ,	св 1,0·10 ⁻³ — 10 вкл 10-99 вкл ¹⁾	±(св 1,0 до 2,0 вкл)	±3,0	
$C_2Br_2F_4$, $C_2H_2F_4$,		±(СВ 1,0 ДО 2,0 ВКЛ)		
С ₃ F ₇ H и т.п.)		±(св 2,0 до 3,0 вкл)	±4,0	
		±(св 3,0 до 4,0 вкл)	±4,5	
			$\int_{-\infty}^{\infty} \Delta(X_n)_n$	
		менее ±2,0	$\pm \sqrt{2.5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$	
			V A _B	
	св 1,0 10-5 –		$\Delta(X_R)_{P=100}$	
	1,0·10 ⁻² вкл	±(св 2,0 до 3,0 вкл)	$\pm \sqrt{3.5^2 + (\frac{\Delta(X_B)_P}{X_R} \cdot 100)^2}$	
•	1,0°10 BKJ		V 21 B	
H_2 , CO_2 , CO , CH_4			$\Delta(X_R)_{P=100}$	
		±(св 3,0 до 4,0 вкл)	$\pm \sqrt{4.5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$	
			V AB	
	св 1,0·10-2 –	менее ±1,0	±2,0	
		±(св 1,0 до 2,0 вкл)	±2,5	
	10 вкл 10-99 вкл ¹⁾	±(св 2,0 до 3,0 вкл)	±3,5	
		±(св 3,0 до 4,0 вкл)	±4,5	
7	св 1,0·10 ⁻⁵ – 1,0·10 ⁻² вкл ²⁾		$\int_{\Omega} \Delta(X_n)_{n \to \infty}$	
		менее ±2,0	$\pm \sqrt{3^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$	
			V A B	
O_2, N_2			$\int_{\Omega} \Lambda(X_n)_n$	
		±(св 2,0 до 3,0 вкл)	$\pm \sqrt{3.5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$	
			λ	
	1	<u></u>		

Целевые компоненты	Диапазон воспроизведе ния объемной (молярной) доли целевого компонента,	Пределы допускаемой относительной погрешности аттестации исходной ГС, %	Пределы допускаемой отн. погрешности заданного значения объемной доли (молярной) целевого компонента в смеси на выходе генератора, %
		± (св 3,0 до 4,0 вкл)	$\pm \sqrt{4.5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$
	св 1,0·10 ⁻² – 10 вкл 10-99 вкл ¹⁾	менее ±1,0 ±(св 1,0 до 2,0 вкл) ±(св 2,0 до 3,0 вкл) ±(св 3,0 до 4,0 вкл)	±2,0 ±2,5 ±3,5 ±4,5
		менее ±2,0	$\pm \sqrt{2.5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$
Инертные и	св 1,0·10 ⁻⁶ — 1,0·10 ⁻³ вкл	±(св 2,0 до 3,0 вкл)	$\pm \sqrt{3.5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$
постоянные газы (Xe, Ne, Kr,Ar, He, и т.п.)		±(св 3,0 до 4,0 вкл)	$\pm \sqrt{4.5^2 + (\frac{\Delta(X_B)_P}{X_B} \cdot 100)^2}$
	св 1,0·10 ⁻³ — 10 вкл 10-99 вкл ¹⁾	менее ±1,0 ±(св 1,0 до 2,0 вкл) ±(св 2,0 до 3,0 вкл) ±(св 3,0 до 4,0 вкл)	±2,0 ±2,5 ±3,5 ±4,5

1) Верхний предел диапазона воспроизведения (99 %) справедлив только для модификаций ГГС-У и ГГС-УР в случаях калибровки генераторов по реальным технически чистым газам. В противном случае верхний предел диапазона воспроизведения объемной (молярной) доли составит не более 10 %. Перечень калибровочных газов согласовывается с производителем при заказе.

 $^{2)}$ Диапазон воспроизведения (св $1,0\cdot 10^{-5}-1,0\cdot 10^{-2}$ вкл) для целевых компонентов азот (N_2) и кислород (O_2) возможен только при комплектовании генераторов регуляторами расхода газа с металлическими уплотнениями.

Примечание 1:

 $\Delta(X_B)_P$ - абс. погрешность определения содержания целевого компонента (компонента В) в газе разбавителе, %;

 X_B - требуемое значение объемной (молярной) доли компонента (компонента В) в смеси, %

Примечание 2:

Генераторы модификаций ГГС-У, ГГС-УР в стандартном варианте калибруются по газу азоту (воздуху). В зависимости от технических требований к генераторам калибровка каналов измерения и регулирования расхода может быть проведена по нескольким технически чистым газам (от 1 до 4).

Примечание 3:

Генераторы модификаций ГГС-У, ГГС-УР не предназначены для приготовления взрывоопасных смесей.

Примечание 4:

В качестве исходных целевых газов для генераторов модификаций ГГС-У, ГГС-УР должны использоваться бинарные газовые смеси — эталоны сравнения (по ТУ 2114-001-02566450-2016 и

др.), ГСО-ПГС 0-го, 1-го, 2-го разряда (по ТУ 6-16-2956-01, ТУ 0272-013-20810646-2014 и др.) с содержанием определяемого компонента не более 10 % в калибровочном газе, технические чистые газы (при наличии соответствующих калибровок в генераторе), соответствующие требованиям по допускаемой относительной погрешности аттестации исходной ГС указанным в таблице 3.

В качестве газа-разбавителя для генераторов модификаций ГГС-У, ГГС-УР должны использоваться технически чистые газы и ПНГ: азот высокой чистоты (особой чистоты по ГОСТ 9293-74 или ТУ 2114-004-05798345-2009, ТУ 6-21-39-96), воздух (по ТУ 6-21-5-82), аргон сорт высший ГОСТ 10157-79 или высокой чистоты по ТУ 6-21-12-94, гелий газообразный марки «А» по ТУ 51-940-80.

В качестве газа-разбавителя для генераторов модификаций ГГС-УТ должны использоваться технически чистые газы и ПНГ: азот высокой чистоты (особой чистоты по ГОСТ 9293-74 или ТУ 2114-004-05798345-2009, ТУ 6-21-39-96), воздух (по ТУ 6-21-5-82), метан (по ТУ 51-841-87). В качестве источника воздуха для генераторов всех модификаций могут использоваться генераторы нулевого воздуха внесенные в Госреестр РФ.

Таблица 2 – Метрологические характеристики генераторов модификации ГГС-У, ГГС-УТ

Источник микропотока	Диапазон воспроизведен ия массовой концентрации целевого компонента, мг/м ³	Обозначение НД используемого ИМ, производительность ИМ, мкг/мин	Пределы допускаемой относительно й погрешности аттестации ИМ, %	Пределы допускаемой относительно й погрешности генератора при работе с ИМ, %
ИМ меры 1-го разряда по ГОСТ 8.578-2014	от 0,02 до 10,00	менее 1,0	±7	±7
(ШДЕК.418319.001 ТУ, ШДЕК.418319.011 ТУ, ИБЯЛ.418319.013 ТУ и др.)	от 10 до 100	более 1,0	±5	±6
ИМ меры 0-го разряда	0.02 =-		±2	±4
и эталоны сравнения	от 0,02 до 10,00 менее 1,0	менее 1,0	±(от 3 до 4)	±5
по ГОСТ 8.578-2014		±5	±6	
	от 10 до 100	более 1,0	±2	±4
ИМ-РТ (ШДЕК.418319.007 ТУ и др.)	от 0,02 до 10,00	менее 1,0	±5	±6
ИМ-Нg (ШДЕК 418319.011 ТУ и др.)	от 0,000002 до 0,00002*) свыше 0,00002 до 1	от 0,1 до 100 нг/мин	±6	±7

 $^{^{*)}}$ — диапазон воспроизведения массовой концентрации целевого компонента 0.000002-0.00002 мг/м 3 для ИМ-Hg возможен только при использовании генераторов модификации ГГС-УТ с верхним пределом измерения и регулирования расхода 50 дм 3 /мин.