

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.31.165.A № 69218

Срок действия до 13 марта 2023 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Газоанализаторы портативные Микросенс М3 (PID)

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью "ЭМИ-Прибор" (ООО "ЭМИ-Прибор"), г. Санкт-Петербург

РЕГИСТРАЦИОННЫЙ № 70544-18

ДОКУМЕНТ НА ПОВЕРКУ МП-020/12-2017

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **13 марта 2018 г.** № **455**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства С.С.Голубев

2018 г

Серия СИ № 040900

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы портативные Микросенс М3 (PID)

Назначение средства измерений

Газоанализаторы портативные Микросенс М3 (PID) (далее - газоанализаторы) предназначены для измерения концентраций горючих газов, объемной доли кислорода, водорода, диоксида углерода и вредных газов в воздухе рабочей зоны и подачи предупредительной сигнализации о достижении установленных пороговых значений.

Описание средства измерений

Газоанализаторы представляют собой автоматические индивидуальные приборы непрерывного действия.

Способ отбора пробы - диффузионный.

Принцип действия каналов с оптическими датчиками основан на избирательном поглощении инфракрасного излучения молекулами углеводородов в области длин волн (3,1-3,4) мкм.

Принцип действия каналов с электрохимическими датчиками измерения основан на измерении тока, вырабатываемого при взаимодействии электродов датчика с целевым газом.

Принцип действия каналов с фотоионизационными датчиками основан на измерении тока, возникающего при ионизации молекул целевого газа ультрафиолетовым излучением.

Конструктивно газоанализаторы выполнены одноблочными в пластмассовом корпусе.

На лицевой панели корпуса расположены:

- цветной жидкокристаллический дисплей;
- "CardioLight" световая панель, служащая для оповещения о состоянии атмосферы и газоанализатора;
 - кнопочная клавиатура (три кнопки);
 - 4 отверстия для диффузионного захода анализируемой среды к датчикам газоанализатора.

На задней панели корпуса расположены: крепление для ремешка или на ремень типа полукольцо с застежкой «крокодил», светодиодный фонарик, гарантийная наклейка, паспортная табличка, динамик звуковой сигнализации.

На нижней части корпуса расположен разъем для подключения газоанализатора к док-станции.

Электрическое питание газоанализаторов осуществляется от встроенного перезаряжаемого Li-Ion аккумулятора.

В корпусе прибора предусмотрено 4 слота для установки датчиков. В нижнем ряду датчиков (при направлении взгляда на лицевую панель прибора) могут быть размещены оптические цифровые датчики для измерения содержания углеводородных газов, либо оптический цифровой датчик СО₂, либо электрохимические датчики на вредные газы (по заказу). Фотоионизационный датчик для измерения предельно допустимых концентраций токсичных и взрывоопасных газов может быть размещен в нижнем правом слоте. В левый верхний слот устанавливается один электрохимический датчик на вредные газы (по заказу), в правый верхний слот устанавливается только датчик кислорода. Конкретный набор датчиков определяется при заказе. Газоанализатор обеспечивает одновременное измерение до 5 определяемых компонентов (при использовании сдвоенного датчика СО/H₂S).

Газоанализаторы обеспечивают выполнение следующих функций:

- цифровая индикация результатов измерений;
- подача световой и звуковой сигнализации при достижении концентрацией измеряемых газов заданного уровня;
- запись и последующее отображение максимальных значений концентраций за период после включения;

- функция «черного ящика» запись результатов измерений в энергонезависимую память;
- передача результатов измерений на ПК, интерфейс USB.

Газоанализаторы имеют жидкокристаллический цифровой дисплей, обеспечивающий отображение:

- результатов измерений содержания определяемых компонентов;
- уровня заряда аккумуляторов;
- информацию о срабатывании сигнализации и о сбоях в работе газоанализатора;
- максимальных и минимальных значений результатов измерений по каждому измерительному каналу.

Газоанализаторы обеспечивают срабатывание сигнализации по двум порогам срабатывания:

- звуковым сигналом;
- светодиодным индикатором;
- отображением на дисплее символов, обозначающих срабатывание сигнализации.

Общий вид газоанализаторов и место пломбирования от несанкционированного доступа приведены на рисунках 1 и 2.

Рисунок 1 - Общий вид газоанализатора портативного Микросенс М3 (PID)

Рисунок 2 - Схема пломбировки от несанкционированного доступа

Программное обеспечение

Газоанализаторы имеют следующие виды программного обеспечения (ПО):

- встроенное;
- автономное.

Встроенное ПО газоанализаторов разработано изготовителем специально для решения задач измерения содержания определяемых компонентов в воздухе рабочей зоны.

Встроенное ПО выполняет следующие основные функции:

- прием и обработку измерительной информации от первичных измерительных преобразователей;
 - диагностику аппаратной и программной частей газоанализатора;
 - хранение результатов измерений;
 - ведение и хранение журнала событий;
 - обмен данными с ПЭВМ по интерфейсу USB.

Встроенное ПО реализует следующие расчетные алгоритмы:

- вычисление результатов измерений содержания определяемых компонентов по данным от первичного измерительного преобразователя;
 - сравнение результатов измерений с заданными пороговыми значениями.

Встроенное ПО идентифицируется при включении газоанализатора путем вывода на дисплей номера версии при включении.

Газоанализаторы имеют возможность работы с автономным ПО «PagTool» для персонального компьютера под управлением ОС Microsoft Windows.

Влияние встроенного ПО учтено при нормировании метрологических характеристик газоанализаторов. Уровень защиты - средний по Р 50.2.077—2014.

Влияние встроенного ПО СИ на метрологические характеристики газоанализаторов учтено при нормировании метрологических характеристик.

Таблица 1 - Идентификационные данные программного обеспечения

данные программного обеспеч	нения						
Идентификационные данные (признаки)	Значение						
Идентификационное наименование ПО	Microsense 4.bin						
Номер версии (идентификационный номер) ПО	не ниже 4.0						
Цифровой идентификатор ПО 8D32DF52, алгоритм CRC32							
Примечание - Значение контрольной суммы, приведен к файлу ПО версии, обозначенной в таблице версии.	ное в таблице, относится только						

Метрологические и технические характеристики

Таблица 2 - Основные метрологические характеристики газоанализаторог

taomida 2 - Ochobhbi	с метрологические хар	желица z - Основные метрологические характеристики газоанализаторов.				
			Пределы допускаемой основной	сновной 1)		Предел
Определяемый	Пиэносеней		погрешности		Наименьший	ПОПУСКАЕМОГО
КОМПОНЕНТ	определя	Акапазон измерении ооъемнои доли определяемого компонента	абсолютной, объемная		разряд индикации	времени
			доля определяемого компонента	относи- тельной	дисплея газоанализатора	установления показаний
Электрохимические дагчики	цатчики					$T_{0,9\mu}$, c
Кислород (О2)		ot 0 10 30%	\0 J \0 -			
		1	±0,2 %	1	0,1%	20
Оксил углерода	от 0 до 500 млн-1	01 0 ДО 40 МЛН ВКЛЮЧ.	±4 млн	1	-	
(CO)		св. 40 до 500 млн ⁻¹	ī	±10%	l MJH-1	30
	от 0 до 2000 млн-1	от 0 до 40 млн-1 включ.	±4 млн ⁻¹	1		
		св. 40 до 2000 млн-1 включ.	1	+10%	1 MJH	30
	от 0 до 100 млн ⁻¹	от 0 до 7,5 млн-1 включ.	±1,5 млн ⁻¹			
Сероводород (Н,S)		св. 7,5 до 100 млн ⁻¹	1	70 000	$0,1 \text{ MJH}^{-1}$	30
	от 0 до 1000 млн ^{-1 2)}	от 0 до 15 млн ⁻¹ включ.	±3 MJH-1	0 / 0 1		
		св. 15 до 1000 млн ⁻¹	1	% UC+	1 млн ⁻¹	25
	от 0 до 10 млн ^{-1 2)}	от 0 до 1 млн-1 включ.	±0,2 MJH-1	0/07-		
		св. 1 до 10 млн ⁻¹	1	+20%	0,1 млн ⁻¹	09
X_{1} T_{2} T_{2}	от 0 до 50 млн ^{-1 2)}	от 0 до 2 млн-1 включ.	±0,4 млн ⁻¹		-	
		св. 2 до 50 млн ⁻¹	1	±20 %	0,1 млн ⁻¹	120
	от 0 до 200 млн ^{-1 2)}	от 0 до 2 млн-1 включ.	±0,4 млн ⁻¹	1		
		св. 2 до 200 млн ⁻¹	1	+20 %	$0,1 \text{ MJH}^{-1}$	30
I Institute of Management	от 0 до 30 млн ⁻¹²⁾	от 0 до 10 млн-1 включ.	±2 млн-1		-	
(НСМ)		св. 10 до 30 млн-1	1	±20 %	1 MJH ⁻¹	70
(11011)	от 0 до 50 млн-1 2)	от 0 до 5 млн-1 включ.	±2 млн ⁻¹	2	-	
		св. 5 до 50 млн-1	1	±20 %	1 MJH ⁻¹	120
				,		

	ţ		Пределы допускаемой основной ¹⁾ погрешности	сновной ¹⁾	Наименьший	редел
Спределяемый	Диапазон изме	Диапазон измерений объемной доли определяемого компонента	абсолютной, объемная доля определяемого компонента	относи-	разряд индикации дисплея газоанализатора	времени установления показаний
	от 0 до 100 млн ⁻¹	от 0 до 10 млн ⁻¹ включ.	±2 млн ⁻¹	1	,	10,9µ, C
		св. 10 до 100 млн ⁻¹	1	20 %	- I MJH-1	40
AMMIAK (NH3)	от 0 до 300 млн ⁻¹	от 0 до 20 млн-1 включ.	±4 млн ⁻¹	1		
		св. 20 до 300 млн ⁻¹	ı	±20 %	І МЛН	40
	от 0 до 1000 млн ^{-1 2)}	от 0 до 30 млн-1 включ.	±6 млн⁻1	1	,	
		св. 30 до 1000 млн ⁻¹	1	±20 %	I MJH ⁻¹	09
	от 0 до 20 млн-1	от 0 до 2,5 млн-1 включ.	±0,5 млн-1	1		
Д.		св. 2,5 до 20 млн ⁻¹	1	±20 %	0,1 млн-1	30
Диоксид серы (SU2)		от 0 до 50 млн-1 включ.	±10 MJH ⁻¹			
	от 0 до 2000 млн-1 2)	св. 50 до 2000 млн- включ.	ı	±20 %	1 млн-1	09
	ot 0 no 250 mm ^{-1 2)}	от 0 до 10 млн ⁻¹ включ.	±2 млн ⁻¹		,	
		Св. 10 до 250 млн ⁻¹	1	+20 %	1 млн-1	40
Оксид азота (NO)		от 0 до 100 млн-1 включ.	±20 млн ⁻¹			
	от 0 до 2000 млн 7	св. 100 до 2000 млн ⁻¹ включ.	ı	±20 %	1 млн ⁻¹	09
	от 0 до 30 млн ⁻¹	от 0 до 1 млн-1 включ.	±0,2 млн ⁻¹			
Диоксид азота		св. 1 до 30 млн ⁻¹	ı	±20 %	0,1 млн ⁻¹	30
(NO ₂)		от 0 до 100 млн-1 включ.	±20 млн ⁻¹	1		
	от 0 до 2000 млн	св. 100 до 2000 млн ⁻¹ включ.	1	±20 %	1 MJH ⁻¹	09
Волорол (Н2)	от 0 до 2% ²⁾	от 0 до 2%	±0.1 %		0.010%	03
(7) W- I	от 0 до 1000 млн ^{-1 2)}	от 0 до 1000 мпн ⁻¹	+20 Mini-1		0,0170	00
Φ rop (F_2)	от 0 до 1 млн- ^{1 2)}	от 0 до 1 млн-1 включ.	±0,04 MJH ⁻¹		0.01 MTH ⁻¹	0/
Apcин(AsH ₃)	от 0 до 1 млн ^{-1 2)}	от 0 до 1 млн ⁻¹	±0,06 млн-1		0,01 MJH ⁻¹	30
)

					1	Deci o Jincios 13
Оппепепе	F		Пределы допускаемой основной ^{Т)} погрепиости	основной 1))	редел
KOMIIOHEHT	Диапазон изм	Диапазон измерений объемной доли	абсопнотной обтажива		разряд индикапии	допускаемого
		RIHAHOHWON O TOWATA	доля определяемого	относи-	дисплея газоанализатопа	установления
			NOMINORCH IA			Too
*	от 0 до 5 млн ^{-1 2)}	01 0 Д0 0,3 МЛН ВКЛЮЧ.	±0,06 млн-1	ı		10,9µ, C
Фосфин (РН3)		св. 0,3 до 5 млн-1		±20 %	0,01 млн ⁻¹	30
	от 0 до 1000 млн-1 2)	от 0 до 10 млн включ.	±2 млн ⁻¹	1	1 MIH-1	
		св. 10 до 1000 млн-1	1	±20 %	1 MTH ⁻¹	09
Моносилан (SiH ₄)	от 0 до 50 млн-1 2)	от 0 до 5 млн включ.	±1 MJH ⁻¹	ı	1	
Хлороводород	,	св. 5 до 50 млн ⁻¹	1	±20 %	0,1 млн-1	09
(HCI)	от 0 до 20 млн-1 2)	от 0 до 2 млн включ.	±0,4 млн ⁻¹			
		св. 2 до 20 млн ⁻¹		700€	0,1 млн	09
Фтороводород (НF)	от 0 до 10 млн ⁻¹	от 0 до 2 млн-1 включ.	±0,4 млн-1			
Карбонитупория		св. 2 до 10 млн ⁻¹	ı	±20 %	0,1 млн ⁻¹	06
(COCl ₂)	от 0 до 1 млн-1 2)	от 0 до 1 млн-1	±0.15 мпн ⁻¹		- 100	
Метилмеркаптан	(1)				0,01 MJH	120
(CH ₃ SH)	от 0 до 10 млн ⁻¹	от 0 до 10 млн ⁻¹	±2 млн ⁻¹	1	0.1 мпн ⁻¹	10
U30H (U ₃)	от 0 до 0,25млн ⁻¹²⁾	от 0 до 0,25млн ⁻¹	1-*************************************			O t
$Б$ ром (Br_2)	от 0 до 5 мин ⁻¹	от 0 до 1 млн-1 включ.	+0.2 MTH ⁻¹	1	0,01 млн-1	09
		св. 1 до 5 млн ⁻¹		/8 UC+	0,1 MJH-1	20
Формальдегид (СН20)	от 0 до 10 млн-1	от 0 до 1 млн-1 включ.	±0,2 млн-1	0/ 07H		
(CITTO)		св. 1 до 10 млн ⁻¹		70 000	0,1 млн-1	80
(C ₂ H ₅ SH)	от 0 до 14 млн-1 2)	от 0 до 14 млн ⁻¹	±0,4 млн-1	0/ 07+	0,1 MJH ⁻¹	06
Этилен (С ₂ Н ₄)	от 0 до 100 мпн ⁻¹	от 0 до 10 млн ⁻¹ включ.	1-мтн-1			
		св. 10 до 100 млн ⁻¹	-	% UC+	1 MJH-1	09
				0/ 077		

редел		$T_{0,9a}, c$	30		30		30		30		20	20	3		20		35		35		35		35		25	35
Наименьший	разряд индикации дисплея газоанализатора		0.01 %		% 10,0		0,01	4 0 / 111	I %HKIIP		0,01	1 %HKTIP			1 %HKIIP		I %HKIIP	417711701	I %HKIIP		I %HKIIP		I %HKIIP	GETOTIAL P	I %HKIIP	1 %HKIIP
основной 1)	относи-		,	1	5 %	ı	5 %	1	#5 %	1	#5 %	ı	#5 %	1	#5 %		#5%	ı	#5 %		±5 %	1	#5 %		#5%	1
Пределы допускаемой основной ¹⁾ погрешности	абсолютной, объемная доля определяемого компонента		±0,1 %	±0,1 %	1	±0,1%	I	±3 % HKITP	1	±0,1%	1	±0,13 % (±3 % HKIIP)	1	±3 % HKIIP	1	±3 % HKITP	1	±3 % HKITP	1	±3 % HKIIP	1	±3 % HKIIP	1	±3 % HKIIP	ı	±5 % HKIIP
:	диалазон измерении объемной доли определяемого компонента		от 0 до 1,5 %	от 0 до 2,0 % включ.	св. 2,0 до 2,5 %	от 0 до 2,0 % включ.	св. 2,0 до 5 %	от 0 до 60 % НКПР включ.	св.60 до 100 % НКПР	от 0 до 2 % включ.	св. 2 до 100 %	от 0 до 60 % НКПР включ.	св. 60 до 100 % НКПР	от 0 до 60 % НКПР включ.	св. 60 до 100 % НКПР	от 0 до 60 % НКПР включ.	св.60 до 100 % НКПР	от 0 до 60 % НКПР включ.	св.60 до 100 % НКПР	от 0 до 60 % НКПР включ.	св.60 до 100 % НКПР	от 0 до 60 % НКПР включ.	св.60 до 100 % НКПР	от 0 до 60 % НКПР включ.	св.60 до 100 % НКПР	от 0 до 50 % НКПР (от 0 до 3 % ³)
П	Диапазон измеј определяем		от 0 до 1,5 %	от 0 до 2,5 %		от 0 до 5 %		or 0 go 100 % HKIIP	(OT U ZO 1, / 1/0")	от 0 до 100 %		or 0 до 100 % HKITP (or 0 до 4.4 % ³⁾)	-	H H	(OT 0 ДО 2,4 % ²⁷)	IP	-		-	H H	+		\rightarrow		(or 0 до 4,0 %")	от 0 до 50 % НБ
Опрепепемий	КОМПОНЕНТ	Оптические датчики		Диоксид углерода	(CO_2)			Пропан (С3Н8)			Momon (TIT)	ічетан (СП4)		Этан (С ₂ Н ₆)		H-Гексан (С ₆ H ₁₄)		Н-Бутан (С ₄ Н ₁₀)		Изобутан (С4Н10)		Пентан (С ₅ H ₁₂)		Пропилен (С ₃ Н ₆)	Manage (TIT)	Метанол (CH_3OH)

рсего листов 15	редел			35	35		35	35		25	35	35	35			35	35	35	30	33	35
	Наименьший	разряд индикации дисплея газоанализатора	J	1 %HKIIP	1 %НКПР	40/11/01	I %HKIIP	1 %HKITP	1 0/111/211	I %HKIIP	1 %HKIIP	1 %HKTIP	1 %HKIIP		инунту	1 70HNIIF	1 %HKITP	1 %HKIIP	1 %HKITD		1 %НКПР
	основной ¹⁾ и	относи-		1		1	±5 %	1	1	₹2 %	1	1	1			±5 %	1	1	ı	±5 %	ı
	Пределы допускаемой основной ¹⁾ погрешности	абсолютной, объемная доля определяемого компонента	+5 % UVIII	TITALI O/ CT	TO % HKIIP	±3 % HKIIP		±5 % HKITP	±3 % HKITP	ı	±5 % HKIIP	±5 % HKIIP	±5 % HKIIP		±3 % HKIIP	1	±5 % HKIIP	±5 % HKIIP	±3 % HKIIP	1	±5 % HKIIP
	Диапазон изменений обтемисж	определяемого компонента	от 0 до 50 % НКПР (от 0 до 0.5 % ³)	от 0 до 50 % НКПР (от 0 до 13 % ³),	or 0 no 100 % HKTTP 0 no 2 0 0 0 11151111	0	OT 0 10 50 % HKITP (or 0 no 1 25 0/ 3)	OT 0 40 100 % HKITP OT 0 10 60 % UKITED	(OT 0 40 2.3 %3) cp 60 m 100 0, 1116773	OT 0 10 50 % HVIIP	OT 0 no 50 % HIVITY (-6 1 2 2 3 3	31 3 40 30 70 HALIF (OT U 40 1,55 %)	от 0 до 50 % НКПР (от 0 до 0,75 $\%^3$)	OT 0 10 00 1 1111D	(or 0 do 1,1 %³) BKINOY.	СВ.60 до 100 % НКПР	OT 0 no 50 % HKITB (OT 0 40,35 %)	OT 0 100 00 00 00 00 00 00 00 00 00 00 00	ot 0 do 1,00% HKIIP ot 0 do 00 % The second of 0 do 1,1 $\%^3$)	св.60 до 100 % НКПР	от 0 до 50 % НКПР (от 0 до 1,1 %³))
	Определяемый	КОМПОНЕНТ	Толуол (метилбензол, С ₇ H ₈)	Этиленоксид (С,Н,О)	Formor (C 11)	DCH30JI (C6H6)	Ацетон ((CH ₃) ₂ CO)	Этипен (С.П.)	C2114)	Н-октан (С ₈ Н ₁₈)	Этанол (С2Н5ОН)	Метил-	третбутиловый эфир (МТБЭ, СН ₃ СО(СН ₃) ₃)	ţ	н-Гептан (С ₇ Н ₁₆)	Нонан (С ₉ Н ₂₀)	Декан (С ₁₀ Н ₂₂)		Стирол (С8Н8)	Этилацетат	(CH ₃ COOCH ₂ CH ₃)

	редел		T _{0,9μ} , c		55	35	35	35		35		35			25		25		25
	Наименьший	разряд индикации дисплея газоанализатора	1 %HKIIP	1 0/11/11/11	TINIIIL I	1 70HKIIP	I %HKIIF	1 %HKIIP		1 %HKIIP		1 %HKITP			0,1		0,1		0,1
	эсновной ¹⁾ г	относи- тельной	ı	•			1	ı		ı		ı			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	±20 %	70 UC+	0/07=	±20 %
П	Пределы допускаемой основной ¹⁾ погрешности	абсолютной, объемная доля определяемого компонента	±5 % HKIIP	±5 % HKIIP	±5 % HKIIP	±5 % HKIIP		±5 % HKIIP		±5 % HKIIP		±5 % НКПР		±0.2 мпн-1		±0,1 млн ⁻¹		±0,2 млн ⁻¹	1
	Лиапазон измерений обт омнож по по	определяемого компонента	от 0 до 50 % НКПР	от 0 до 50 % НКПР	от 0 до 50 % НКПР	от 0 до 50 % НКПР		от 0 до 50 % НКПР		от 0 до 50 % НКПР		от 0 до 50 % НКПР		от 0 до 1 млн-1	св. 1 до 20 млн ⁻¹	от 0 до 0,5 млн ⁻¹	св. 0,5 до 20 млн ⁻¹	от 0 до 1 млн-1	св. 1 до 40 млн ⁻¹
	Диапазон изм	определя	от 0 д	0 то	от 0	от 0 д		от 0 д		от 0 д		от 0 до	атчики	от 0 до 20 мпн ⁻¹		от 0 до 100 млн ⁻¹		от 0 до 40 млн ⁻¹	
	Определяемый	компонент	Бензин автомобильный по ГОСТ Р 51313-99	Топливо дизельное по ГОСТ 305-2013	Керосин по ГОСТ Р 52050-2006	Уайт-спирит по ГОСТ 3134-78	Топливо для реак-	тивных двигателей по ГОСТ 10227-86	Бензин	авиационный по ГОСТ 1012-72	Бензин	неэтилированный по ГОСТ Р 51866-2002	Фотоионизационные датчики	Бензол (С ₆ Н ₆)	11	У ксусная кислота (С.Н.О.)	7 Mornings	2-мстилиропен (изобутилен) Гі-С, Н., 1	[8118]

					q	Deer o Jincrob 13
			Пределы допускаемой основной 1)	СНОВНОЙ 1)		,
Определяемый	Лиапазон изме	The state of the s	погрешности		Наименьший	редел
компонент	определяє	определяемого компонента	абсолютной, объемная доля определяемого	относи-	разряд индикации дисплея газоанализатора	времени установления показаний
Метилбензол	- 000	0T () TO 1 MHH-1	NOMINORCHIA		I	$T_{0,9\mu}$, c
(толуол) [С ₇ H ₈]	от о до 20 млн	or 1 no 20 mm ⁻¹	±0,2 млн	1	0.1	36
о-Ксилол		OT 0 70 1 MIH-1		±20 %	0,1	73
$(Диметилбензол)$ $[C_6H_4(CH_3),1]$	от 0 до 20 млн ⁻¹	от 1 до 20 млн ⁻¹	±0,2 MJH		0.1	25
77(C)	,			±20 %)
Арсин (AsH ₃)	от 0 до 1,5 млн ⁻¹		±0,02 млн-1	1		
,		св. 0,1 до 1,5 млн	ı	±20 %	0,01	25
Φ осфин (PH_3)	от 0 до $1,5$ млн ⁻¹	от 0 до 0,1млн-1	±0,02 млн ⁻¹	1		
		св. 0,1 до 1,5 млн ⁻¹	1	±20 %	0,01	25
Нафталин (С ₁₀ Н ₈)	от 0 до 16 млн ⁻¹	от 0 до 1 млн-1	±0,2 млн ⁻¹			
Трихпонати		св. 1 до 16 млн ⁻¹	1	±20 %	0,1	25
(C,HCl,)	от 0 до 24 млн ⁻¹	от 0 до 1 млн-1	$\pm 0.2 \mathrm{MJH}^{-1}$	1		
(6,211,2)		св. 1 до 24 млн ⁻¹	1	+20 %	0,1	25
Этан (С ₂ Н ₆)	от 0 до 560 млн ⁻¹	от 0 до 10 млн-1	±2 млн ⁻¹			
		св. 10 до 560 млн ⁻¹	1	±20 %	1	25
Пропан (С3Н8)	от 0 до 999 млн ⁻¹	от 0 до 10 млн-1	±2 млн ⁻¹	-		
		св. 10 до 999 млн-1	ı	±20 %		25
н-Гексан (С ₆ Н ₁₄)	от 0 до 300 млн ⁻¹	от 0 до 10 млн-1	±2 млн ⁻¹	1		
		св. 10 до 300 млн-1	1	±20 %		25
н-Бутан (С ₄ Н ₁₀)	от 0 до 999 млн-1	от 0 до 10 млн ⁻¹	±2 MJH-1			
		св. 10 до 999 млн ⁻¹	1	+20 %	_	25
Изобутан (С ₄ H ₁₀)	от 0 до 999 млн-1	от 0 до 10 млн ⁻¹	±2 MJH ⁻¹			
		св. 10 до 999 млн-1	1	+20 %	-	25
Пентан (С ₅ H ₁₂)	от 0 до 400 млн-1	от 0 до 10 млн-1	±2 млн ⁻¹	0/07		
		св. 10 до 400 млн ⁻¹		±20 %	1	25

					1	Deer o Jirici OB 13
			Пределы допускаемой основной	основной 1)		пелей
Определяемый	Диапазон изме	Диапазон измерений обтемиой по	погрешности		Наименьший	допускаемого
КОМПОНЕНТ	определя	определяемого компонента	абсолютной, объемная		разряд индикации	времени
	•		доля определяемого	относи-	дисплея	установления
			компонента	тельной	газоанализатора	показаний
Пропилен (С ₃ Н ₆)	от 0 до 999 млн-1	от 0 до 10 млн ⁻¹	±2 млн ⁻¹			I _{0,9μ} , c
		св. 10 до 999 млн ⁻¹	1	% 02+	1	25
Метанол (СН ₃ ОН)	от 0 до 99 млн ⁻¹	от 0 до 3 млн ⁻¹	±0.6 млн ⁻¹	0/07-		
		св. 3 до 99 млн ⁻¹		% UC+	0,1	25
Отиленоксид	от 0 до 99 млн-1	от 0 до 1 млн ⁻¹	±0.2 MIH-1	0/07-		
(C2H4O)	***************************************	св. 1 до 99 млн ⁻¹	-	\(\frac{1}{2}\)	0,1	25
Ацетон ((СН ₃) ₂ СО)	от 0 до 999м пн-1	от 0 до 10 млн ⁻¹	±2 MTH-1	-20 /0		
		0		/0 00-		25
Этилен (С ₂ Н ₄)	от 0 до 999мин-1		Г-штм С+	±20 %		
	HICHICACO	св. 10 до 999 _{млн} -1	ШСМ 77-	, o oc -	1	25
OKTAH (C.H)	- 000 0 0 000	от 0 до 10 мпн ⁻¹		±70 %		ì
(81118)	01 0 Д0 999 млн	Cp 10 no 0001	т НТМ 7±	1	-	u d
H		CB. 10 40 999 MJIH	1	±20 %	-	C7
Фенол (С ₆ Н ₅ ОН)	от 0 до 1 млн ⁻¹	от 0 до 0,05 млн-1	±0,01 млн ⁻¹	1		
		св. 0,05 до 1 млн ⁻¹	1	+20 %	0,001	25
н-Гептан (С ₇ Н ₁₆)	от 0 до 999млн-1	от 0 до 10 млн ⁻¹	±2 MJH-1	0/07-		
Этипоподож		св. 10 до 999 млн-1	1	+20 %	_	25
(C,H,O)	от 0 до 1 млн ⁻¹	от 0 до 0,05 млн ⁻¹	±0,01 MJH ⁻¹	0/07-		
Keupuu		св. 0,05 до 1 млн ⁻¹	1	+20 %	0,001	25
автомобильный	[-	от 0 до 10 млн ⁻¹	±2 млн ⁻¹			
(по изобутилену)	01 0 Д0 999 МЛН	св. 10 до 999 млн ⁻¹	1	70 000	1	25
Топливо дизельное				170 /0		
(по изобутилену)	от 0 до 999 млн-1	от 0 до 10 млн-1	±2 млн ⁻¹			
Керосин		св. 10 до 999 млн-1	1	±20 %	_	25
(по изобутилену)	от 0 до 999 млн-1	от 0 до 10 млн-1	±2 млн-1	1		
(())		св. 10 до 999 млн ⁻¹	1	±20 %	1 25	5
				> >1		

Определяемый	Лиапасаны П		т.ределы допускаемой основной - погрешности	сновной	Наименеший	редел
КОМПОНЕНТ	определяю	дишаээн измерении ооъемнои доли определяемого компонента	абсолютной, объемная доля определяемого	относи-	разряд индикации дисплея газоанализатора	времени установления показаний
Уайт-спирит		110 0	NOMILO INCHIA		1	T _{0.90} , c
(по изобутилену)	от 0 до 999 млн-1	01 0 40 10 MJIH	±2 млн⁻¹	1		
п-Бутанол		5/1-	1	±20 %	_	25
(C_4H_9OH)	от 0 до 10 млн-1		±0,2 млн ⁻¹	1		25
			1	±20 %	0,1	7
Пропанол (С ₃ Н ₇ ОН)	от 0 до 10 млн ⁻¹	от 0 до 1 млн-1	±0,2 млн ⁻¹	1		36
		св. 1 до 10 млн-1	1	70 000	0,1	C7
Этилбензол (С, Н, о)	OT 0 no 50 Mm-1	от 0 до 1 млн-1	1-111 C U+	0/ 077		
(01-0-)	HIGH OC OF C TO	св. 2 по 50 мпн-1	HICM 2,0-	1	0.1	25
Current (C 11)			•	±20 %	7,5	
CIMPOII (C8H8)	от 0 до 10млн-1	01 U 40 U,S MJH	±0,1 млн⁻¹	ı		
		св. 0,5 до 10 млн	1	±20 %	0.01	25
Оксид азота (NO)	от 0 до 10млн ⁻¹	от 0 до 0,5 млн-1	$\pm 0.1 \; { m MJH}^{-1}$	1	1060	67
Montage		св. 0,5 до 10 млн ⁻¹	,	% UC+	0.01	Č
(CH,SH)	от 0 до 10млн ⁻¹	от 0 до 0,5 млн ⁻¹	±0,1 млн ⁻¹	0/01	0,01	C7
(113511)		св. 0,5 до 10 млн ⁻¹	ı	/0 UCT		
Примечания:				TZU 70	0,01	25

Примечания:

¹⁾ В нормальных условиях эксплуатации

²⁾ Измерительные каналы не могут быть применены для контроля ПДК в воздухе рабочей зоны, только для контроля аварийных выбросов. 3) Значения НКПР горючих газов указаны в соответствии с ГОСТ Р МЭК 60079-20-1-2011.

25

Программное обеспечение газоанализатора имеет возможность отображения результатов измерений по измерительным каналам вредных газов в единицах измерений массовой концентрации, мг/м³. Пересчет значений содержания определяемого компонента, выраженных в единицах объемной доли, млн⁻¹, в единицы массовой концентрации, мг/м³, выполняется автоматически для условий 20 °C и 760 мм рт. ст. Т ица 3 - Пределы допускаемой дополнительной погрешности газоанализаторов

инда з чтределы допускаемой дополнительной погрешности газоанализатор	ОВ
Паименование характеристики	Значение
Предел допускаемой вариации показаний, в долях от предела допускаемой	
основной погрешности	0,5
Пределы допускаемой дополнительной погрешности от влияния изменения	0,5
TOMITE PAIL A DISTORDING TO A SHARING TO A S	
Tadin na kamabic 10 C OT Temperativni oungrapativi	
The delia de	
- для измерительных каналов вредных газов, водолого и	
(олектрохимический сенсор) для диапазона температур от 20 го 115	
и св. 123 до 150 С	
- для измерительных каналов предельно допустимых концентраций	±1,0
токсичных и взрывоопасных газов и паров (фотоновические в	
A A A A A A A A A A	
пределы допускаемой дополнительной погренциости от деле	±1,0
Temilepat you ordy wardillen it anamanayayayaya anama	
эксплуатации на каждые 10 °C от температуры определения основной	
погрешности, в долях от предела допускаемой основной погрешности	
для измерительных каналов довзрывоопасных концентраций углеводородов:	
- для диапазона температур от -10 до +15 включ. и св.+25 до +40 °C	
- для диапазона температур от -40 до -10 включ. и св. +40 до +60 °C	±2,0
Пределы допускаемой дополнительной погрешности от влияния изменения	±4,0
влажности окружающей и эненияхической от влияния изменения	
влажности окружающей и анализируемой сред в рабочих условиях эксплуатации на каждые 10% от влажности условиях эксплуатации	
на каждые 10 % от влажности при определении основной погрешности, в долях от пределов допускаемой основной установанием.	
T-Z-110 ZOIT ORGEMON OCHOBHON III) DEIIIHOCTIA	$\pm 0,1$
Суммарная дополнительная погрешность от влияния содержания не измеряемых компонентов в значимими содержания не измеряемых	
компонентов в анализируемой газовой смеси. В долях от пределов надуумильный	
The permitter in the confee	$\pm 0,5$
Время прогрева и выхода газоанализатора в рабочий режим измерений, с, не более	- 0,0
не оолее	120
	120

Таблица 4 - Основные технические характеристики газоанализаторов

Наименование характеристики	1
Габаритные размеры, мм, не более	Значение
- высота	
- ширина	35
- длина	70
Масса, кг, не более	115
	0,25
Нормальные условия эксплуатации:	
- температура окружающей среды ^{, о} С	20±5
- относительная влажность, %	от 30 до 80
- атмосферное давление, кПа	100±3,3
Условия эксплуатации:	
- температура окружающей среды*, °С	от -40 до +60
- относительная влажность окружающего воздуха, %	от 20 до 95 (без конденсации влаги)
- атмосферное давление, кПа	от 80 до 120
Параметры электропитания:	
- напряжение постоянного тока, В	4,2
- тип источника питания - аккумулятор	Li-Ion 1800

должение таблицы 4

Наименование характеристики	Значение 100	
Минимальное время беспрерывной работы, ч.:		
- отсутствует фотоионизационный сенсор		
- фотоионизационный сенсор установлен		
Средняя наработка на отказ, час	8	
Средний срок службы, лет	10 000	
	10	

Знак утверждения типа

наносится на шильд газоанализатора методом наклейки и на титульный лист руководства по эксплуатации типографским методом.

Комплектность средства измерений

Таблица 5 - Комплектность средства измерений

Наименование	Обозначение	V o Trees
Газоанализатор портативный Микросенс М3 (PID)	3 cosma tempe	Количество
Зарядное устройство	-	1 шт.
Док-станция	-	1 шт.
Проботборное устройство	-	1 шт.
Упаковка	-	по заказу
	-	1 шт.
Насадка для градуировки	-	1 шт.
Диск с программным обеспечением PagTool	_	1 шт.
Методика поверки	МП-020/12-2017	
Руководство по эксплуатации		1 экз.
Сертификат соответствия (копия)	МРБП.413347.017 РЭ	1 экз.
(кипоя) киатоготьетствия (копия)	-	1 экз.

Поверка

осуществляется по документу МП-020/12-2017 «Газоанализаторы портативные Микросенс М3 (PID). Методика поверки», утвержденному ООО «ПРОММАШ ТЕСТ» 30 ноября 2017 г. Основные средства поверки:

- азот газообразный особой чистоты сорт 1, 2 по ГОСТ 9293-74 в баллоне под давлением;
- стандартные образцы состава газовых смесей ГСО 10262-2013, ГСО 10383-2013, ГСО 10531-2014, ГСО 10532-2014, ГСО 10535-2014, ГСО 10537-2014, ГСО 10538-2014, ГСО 10540-2014, ГСО 10541-2014, ГСО 10544-2014, ГСО 10547-2014;
- рабочий эталон 1-го разряда генератор газовых смесей ГГС модификаций ГГС-К, ГГС-Р и ГГС-Т, (рег. № 62151-15) в комплекте со стандартными образцами газовых смесей ГСО 10243-2013, ГСО 10245-2013, ГСО 10247-2013, ГСО 10249-2013, ГСО 10262-2013, ГСО 10323-2013, ГСО 10332-2013, ГСО 10334-2013, ГСО 10364-2013, ГСО 10367-2013, ГСО 10385-2013, ГСО 10524-2014, ГСО 10539-2014, ГСО 10540-2014, ГСО 10545-2014, ГСО 10546-2014, ГСО 10547-2014, ИМ01-0-Г1, ИМ01-0-Г2, ИМ05-М-А2, ИМ07-М-А2, ИМ159-М-А2, ИМ38-М-А2, ИМ39-М-Б, ИМ ИМ94-М-А2, ИМ09-М-А2, ИМ104-М-А2, ИМ107-М-Д, ИМ108-М-Е, ИМ129-О-Г1, ИМ130-М-А2, ИМ30-М-А2, ИМ38-М-А2, ИМ47-О-А2, ИМ64-М-А2, ИМ89-М-А2, ИМ97-0-А2;
 - генератор озона ГС-024 (рег. № 23505-08).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

С дения о методиках (методах) измерений

приведены в эксплуатационной документации.

Нормативные и технические документы, устанавливающие требования к газоанализаторам портативным Микросенс М3 (PID)

ГОСТ IEC 60079-29-1-2013 Взрывоопасные среды. Часть 29-1. Газоанализаторы. Требования к эксплуатационным характеристикам газоанализаторов горючих газов.

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия.

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

ГОСТ 8.578-2014 ГСИ Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.

МРБП.413347.017 ТУ Газоанализаторы портативные Микросенс М3 (PID). Технические условия

Изготовитель

Общество с ограниченной ответственностью «ЭМИ-Прибор» (ООО «ЭМИ-Прибор») ИНН 7802806380

Адрес: 194156, г. Санкт-Петербург, пр. Энгельса, д. 27, корп. 5, литера А Телефон (факс): +7 (812) 601-06-94

Испытательный центр

Общество с ограниченной ответственностью «ПРОММАШ ТЕСТ» (ООО «ПРОММАШ ТЕСТ»)

Адрес: 117246, г. Москва, Научный проезд, д. 8, стр. 1, пом. XIX, комн. №14-17

Телефон: +7 (495) 775-48-45 E-mail: info@prommashtest.ru

Аттестат аккредитации ООО «ПРОММАШ ТЕСТ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.312126 от 12.04.2017 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п

2018 г.

ПРОШНУРОВАНО, ПРОНУМЕРОВАНО И СКРЕПЛЕНО ПЕЧАТЬЮ

15/wereaggaraje TOB(A)

