Руководство по эксплуатации

Прибор для индикации горючих газов из газовых реле силовых трансформаторов «ПИГГ»

4215-001-11425056-2015 PЭ

Содержание

1		Опі	исание прибора	3	
	1.	.1	Назначение	3	
	1.	.2	Устройство и принцип работы	4	
	1.	.3	Технические характеристики	6	
	1.	.4	Комплект поставки	7	
	1.	.5	Маркировка	7	
2		Фуг	нкционал и настройка прибора «ПИГГ»	8	
	2.	.1	Включение и выключение прибора «ПИГГ»	8	
	2.	.2	Процедура проверки газа на горючесть	8	
	2.	.3	Включение и выключение насоса	8	
	2.	.4	Включение и выключение подсветки дисплея	8	
	2.	.5	Проверка уровня напряжения аккумуляторной батареи	8	
	2.	.6	Настройка прибора «ПИГГ».	9	
3		Экс	плуатация прибора	. 13	
	3.	.1	Подготовка к эксплуатации	.13	
	3.	.2	Использование по назначению	.13	
	3.	.3	Порядок передачи данных на компьютер	. 16	
4		Mej	ры безопасности	.17	
5		Воз	можные неисправности, техническое обслуживание и		
рe	ем			.17	
6		Упа	іковка	.18	
7		Xpa	инение	.18	
8	В Транспортирование				
9					
1(•				
			A A		

Руководство по эксплуатации 4215-001-11425056-2015 РЭ (далее – РЭ) предназначено для ознакомления с устройством, принципом действия и обеспечения правильной эксплуатации прибора для индикации горючих газов из газовых реле силовых трансформаторов «ПИГГ» (далее – прибор «ПИГГ»).

Предприятие-изготовитель гарантирует нормальную работу прибора «ПИГГ» только при строгом выполнении требований и рекомендаций, изложенных в РЭ.

1 Описание прибора

- 1.1 Назначение
- 1.1.1 Прибор «ПИГГ» является портативным устройством, предназначенным для индикации содержания водорода (H_2) и суммарной концентрации углеводородов (C_xH_y) в пробе газов из газовых реле силовых трансформаторов.
- 1.1.2 Прибор «ПИГГ» применим для отбора проб газов из газовых реле силовых трансформаторов и проверки на горючесть газов, отобранных в специализированный пробоотборник с гибкой оболочкой.
- 1.1.3 Метод отбора проб принудительный.
- 1.1.4 Прибор «ПИГГ» является индикатором наличия горючих газов и не подлежит метрологический аттестации.
- 1.1.5 Прибор «ПИГГ» может быть использован в районах с умеренным и холодным климатом.
- 1.1.6 Прибор «ПИГГ» соответствует современным требованиям надежности и безопасности, обеспечивает повышение оперативности получения и достоверности данных при проверках газов из газовых реле на горючесть, проводимых в рамках оценки технического состояния силовых трансформаторов.
- 1.1.7 Прибор «ПИГГ» соответствует требованиям ТУ 4215-001-11425056-2015.

- 1.2 Устройство и принцип работы
- 1.2.1 Общий вид и габаритные размеры прибора «ПИГГ» представлены на рисунке 1.

Рисунок 1. Общий вид и габаритные размеры прибора «ПИГГ»

1.2.2 Прибор «ПИГГ» состоит из корпуса (1), входного и выходного штуцера (2, 3), дисплея (4), панели управления (5), клипсы (6). На торцевой сторона прибора «ПИГГ» находится разъем microUSB (7) для заряда аккумуляторной батареи и связи в ПЭВМ.

В корпусе прибора расположены кювета в сборе (включает датчики водорода (H_2) и суммы углеводородов (C_xH_y) , насос, платы датчиков и насоса), микропроцессорная плата управления (МПУ), соединительные шлейфы, аккумуляторная батарея (АКБ).

1.2.3 Принцип работы прибора «ПИГГ» основан на электрохимическом методе обнаружения содержания водорода и оптическом методе обнаружения содержания углеводородных газов в газовой среде, индикации уровня обнаруженного газа и сигнализации превышения установленных пороговых значений.

1.2.4 Микропроцессор прибора «ПИГГ» позволяет выполнять следующие функции:

- включение и выключение прибора;
- самодиагностика (анализ исправности) прибора;
- преобразование выходных сигналов датчиков;
- отображение показаний на дисплее, индикация превышения установленных пороговых значений;
- управление работой насоса;
- контроль напряжения аккумуляторной батареи и отключение прибора при ее разряде;
- анализ состояния кнопок на панели управления;
- управление хранением и передачей данных на ПЭВМ.

1.2.5 В приборе обеспечено выполнение следующих функций:

в режиме настройки:

- установка идентификатора объекта;
- установка даты, времени;
- установка пороговых значений включения сигнализации;
- установка времени записи данных (продолжительности анализа) в память прибора.

в рабочем режиме (режим анализа):

- индикация уровня обнаруженного газа;
- световая сигнализация при превышении установленного порогового значения контролируемого газа;
- включение или выключение насоса;
- индикация напряжения аккумуляторной батареи;
- индикация низкого напряжения аккумуляторной батареи и защита от глубокого разряда;
- включение или выключение подсветки дисплея.

1.3 Технические характеристики

1.3.1 Основные технические характеристики прибора «ПИГГ» представлены в таблице 1.

Таблица 1. Основные технические данные.

Наименование параметра, единица измерения	Значение
Объект измерений	Газ из газового реле
Индикация горючих газов:	
водород (Н ₂), % об. доли	0,2-5
сумма углеводородов (C_xH_y), % об. доли	0,2-5
Пороговая чувствительность, не хуже, % об. доли	0,2
Возможность определения горючих газов в	По
бескислородной среде	Да
Электропитание	Автономное (от аккумулятора)
Напряжение питания от аккумуляторной батареи, В	$3,75\pm0,4$
Напряжение электропитания зарядного устройства, В	220±22
от сети переменного тока частотой, Гц	50±1
Время непрерывной работы, не менее, ч	4
Потребляемая мощность, не более, ВА	5
Интерфейс передачи данных	USB
Автоматическая система самодиагностики	Да
Микропроцессорное управление	Да
Запись и хранение в памяти данных индикации	Да
Время установления рабочего режима, не более, мин	5
Продолжительность анализа, не более, мин	2
Степень защиты корпуса	IP 55
Габаритные размеры, не более, мм	220×96,5×40
Масса прибора, не более, кг	0,3
1.2.0 H. C. HUPP.	УУДОФ

- 1.3.2 Прибор «ПИГГ» имеет климатическое исполнение УХЛ3* для работы при температуре от -30 °C до +50 °C.
- 1.3.3 Прибор «ПИГГ» сохраняет работоспособность при следующих условиях эксплуатации:
 - относительная влажность воздуха от 30 до 90 %;
 - температура окружающей среды от -30 °C до +50 °C;
 - атмосферное давление 84 − 106,7 кПа (630 − 800 мм. рт. ст.).
- 1.3.4 Прибор «ПИГГ» имеет следующие показатели надежности по ГОСТ 27.003:
 - установленная безотказная наработка не менее 4 ч;
 - средний срок службы не менее 10 лет (кроме аккумуляторной батареи и газочувствительных датчиков);
 - среднее время восстановления работоспособного состояния, не более – 1 ч.

- 1.4 Комплект поставки
- 1.4.1 Комплект поставки прибора «ПИГГ» представлен в таблице 2.

Таблица 2. Комплект поставки.

Обозначение	Наименование изделия	Количество
ПИГГ	Прибор для индикации горючих газов из газовых реле силовых трансформаторов «ПИГГ»	1 шт.
КС	Кабель для связи с компьютером	1 шт.
3У	Зарядное устройство	1 шт.
CD	CD с программным обеспечением	1 шт.
ΦМ	Фильтр (маслоуловитель) для газового реле	1 шт.
EL-PACK G	Пробоотборник с гибкой оболочкой для отбора проб газов EL-PACK G-300, 300 см ³ (ТУ 4215-210-66336888-2015)	2 шт.
TCM	Трубка гибкая соединительная маслостойкая	2 шт.
ПС	Паспорт (4215-100-11425056-2015 ПС)	1 экз.
РЭ	Руководство по эксплуатации (4215-100-11425056-2015 РЭ)	1 экз.
KT	Кейс транспортировочный	1 шт.

- 1.5 Маркировка
- 1.5.1 На корпусе прибора «ПИГГ» выполнена маркировка следующего содержания:
 - на лицевой стороне:
 - логотип «ELCHROM» ELCHROM:
 - 💿 кнопка «ON» включение прибора «ПИГГ»;
 - кнопка «START» выполнение проверки на горючесть;
 - кнопка «PUMP» включение/выключение насоса;
 - кнопка «MENU» вход в меню прибора «ПИГГ»;
 - кнопка «ОFF» выключение прибора/выход из меню;

 - кнопка «□» уровень напряжения аккумулятора;
 - на верхней панели:
 - обозначение входного («А») и выходного («Б») штуцеров;
 - на оборотной стороне:
 - наименование прибора «ПИГГ»;
 - серийный номер N прибора «ПИГГ»;
 - климатическое исполнение УХЛ3; степень защиты IP55; U_{пит}=3,75 B; масса 0,3 кг;
 - TY 4215-001-11425056-2015.

2 Функционал и настройка прибора «ПИГГ»

2.1 Включение и выключение прибора «ПИГГ».

Включение прибора «ПИГГ» осуществляется при нажатии и удержании кнопки «ON» • в течение не более 5 секунд. Происходит переход прибора «ПИГГ» в рабочий режим.

Выключение прибора «ПИГГ» осуществляется при нажатии и удержании кнопки «OFF» • в течение не более 10 секунд.

2.2 Процедура проверки газа на горючесть.

Кнопка «START» в рабочем режиме используется для проведения процедуры проверки газа на горючесть, с сохранением данных проверки в память прибора. Подробное описание процедуры проверки газа на горючесть приведено в разделе 3 РЭ.

Длительность выполнения процедуры проверки газа на горючесть определяется значением параметра tACC (время проведения проверки, сек.).

Время tACC устанавливается в меню настройки прибора в секундах (см. п. 2.4.8 РЭ).

2.3 Включение и выключение насоса.

Кнопка «PUMP» в рабочем режиме используется для включения и выключения насоса прибора «ПИГГ», без сохранения данных в память прибора.

Время работы насоса регулируется вручную нажатием кнопки «PUMP» • ...

2.4 Включение и выключение подсветки дисплея.

Кнопка « ⁻♀ → в рабочем режиме используется для включения и выключения подсветки дисплея прибора «ПИГГ»

2.5 Проверка уровня напряжения аккумуляторной батареи

Кнопка «□» • в рабочем режиме используется для проверки уровня напряжения аккумуляторной батареи прибора «ПИГГ».

Параметр UБAt должен находиться в диапазоне $(3,75\pm0,4)$ В. Значение UБAt ≥ 4.2 В соответствует полному заряду АКБ.

При UБAt ≤ 3.7 В рекомендуется зарядить АКБ прибора.

Значение UБAt < 3.4 В соответствует критическому уровню заряда АКБ, при котором прибор отключается.

2.6 Настройка прибора «ПИГГ».

Параметры настройки прибора «ПИГГ» выбираются последовательным нажатием кнопки «MENU» •••.

В режиме настройки для изменения параметров прибора «ПИГГ» необходимо в выбранном пункте меню нажать кнопку «PUMP» .

Под первым символом выбранного параметра будет мигать символ «v». При помощи цифровой клавиатуры необходимо задать нужное значение параметра.

Для сохранения введенного значения параметра необходимо повторно нажать кнопку «PUMP» ••••.

2.6.1 Настройка идентификатора объекта.

Нажатием кнопки «MENU» выбрать параметр «IdEntiFC» (Рисунок 2).

Нажатием кнопки «PUMP» войти в режим настройки, задать нужное значение параметра, повторным нажатием кнопки «PUMP» сохранить внесенные изменения (Рисунок 3).

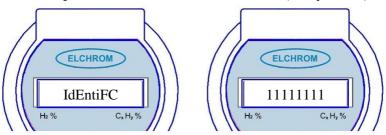


Рисунок 2. Рисунок 3. Пример настройки IdEntiFC

Для дальнейшей идентификации проведенной проверки в качестве идентификатора объекта можно использовать, например, заводской номер трансформатора.

По умолчанию установлено значение IdEntiFC = 11111111

2.6.2 Настройка даты.

Нажатием кнопки «MENU» выбрать параметр «d ___.__» (день.месяц.год).

Нажатием кнопки «PUMP» войти в режим настройки, задать текущую дату, повторным нажатием кнопки «PUMP» сохранить внесенные изменения (Рисунок 4).

Рисунок 4. Пример настройки даты

2.6.3 Настройка времени.

Нажатием кнопки «MENU» выбрать параметр «t ____» (часы.минуты.секунды).

Нажатием кнопки «PUMP» войти в режим настройки, задать текущее время, повторным нажатием кнопки «PUMP» сохранить внесенные изменения (Рисунок 5).

Рисунок 5. Пример настройки времени

2.6.4 Показание температуры.

Нажатием кнопки «MENU» выбрать параметр «t °C ___._» (Рисунок 6). Параметр t °C характеризует температуру окружающей среды, является информативным, настройка не предусмотрена.

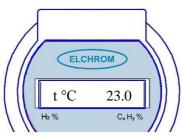


Рисунок 6. Пример показания температуры.

2.6.5 Показание количества записей.

Нажатием кнопки «MENU» выбрать параметр «ЗАП _____» (Рисунок 7).

Параметр ЗАП характеризует количество записей в памяти прибора, является информативным, настройка не предусмотрена.



Рисунок 7. Пример показания количества записей.

2.6.6 Настройка порогового значения по каналу $C_x H_y$.

Нажатием кнопки «MENU» выбрать параметр «СН.ПР __.__».

Нажатием кнопки «PUMP» войти в режим настройки, задать нужное значение параметра, повторным нажатием кнопки «PUMP» сохранить внесенные изменения (Рисунок 8).

Рисунок 8. Пример настройки порогового значения по каналу $C_x H_y$.

Значение СН.ПР должно находиться в диапазоне (0.20-5.00)% По умолчанию установлено значение СН.ПР = 2.00%

2.6.7 Настройка порогового значения по каналу Н2

Нажатием кнопки «MENU» выбрать параметр «H2.ПР . ».

Нажатием кнопки «PUMP» войти в режим настройки, задать нужное значение параметра, повторным нажатием кнопки «PUMP» сохранить внесенные изменения (Рисунок 9).

Рисунок 9. Пример настройки порогового значения по каналу Н₂.

Значение H2.ПР должно находиться в диапазоне (0.20-5.00)% По умолчанию установлено значение H2.ПР = 2.00%

2.6.8 Настройка времени проведения проверки.

Нажатием кнопки «MENU» выбрать параметр «tACC _____» (секунды).

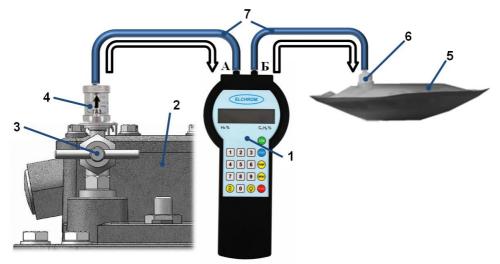
Нажатием кнопки «PUMP» войти в режим настройки, задать нужное значение параметра, повторным нажатием кнопки «PUMP» сохранить внесенные изменения (Рисунок 10).



Рисунок 10. Пример настройки времени проведения проверки.

Рекомендуемое значение tACC должно находиться в диапазоне (20-120) секунд.

По умолчанию установлено значение tACC=90 секунд.


3 Эксплуатация прибора

- 3.1 Подготовка к эксплуатации
- 3.1.1 При поступлении прибора «ПИГГ» с предприятия-изготовителя внешним осмотром убедиться в целости упаковки, открыть упаковку, проверить комплектность, целостность и отсутствие механических повреждений прибора «ПИГГ», сверить заводской номер с номером, указанным в паспорте.
- 3.1.2 Перед вводом в эксплуатацию прибора «ПИГГ» и/или после его хранения более одного месяца необходимо убедиться, что аккумуляторная батарея прибора «ПИГГ» заряжена (см. п. 2.5 РЭ).
- 3.1.3 При необходимости, зарядить аккумуляторную батарею.
- 3.1.4 По умолчанию в приборе «ПИГГ» установлено московское время. При необходимости, произвести настройку даты и времени (п.п. 2.6.2 2.6.3 РЭ).
- 3.1.5 При необходимости, произвести дополнительную настройку прибора «ПИГГ» (см. раздел 2 РЭ).
- 3.2 Использование по назначению
- 3.2.1 Включить прибор «ПИГГ» нажатием кнопки «ON» ...
- 3.2.2 Происходит автоматическое тестирование и установка нулевых показаний датчиков H_2 и $C_x H_v$

ВНИМАНИЕ! Включение, тестирование, установку нулевых показаний датчиков H_2 и C_xH_y прибора «ПИГГ» необходимо производить до соединения входного штуцера «А» с местом отбора пробы.

Прибор готов к выполнению процедуры проверки газа на горючесть при значении показаний датчиков H_2 и C_xH_y менее 0.2 % 3.2.3 Установить идентификатор объекта IDENTIFC (например, заводской номер трансформатора) для дальнейшей идентификации проведенной проверки (см. п. 2.6.1 РЭ).

- 3.2.4 Собрать систему для проверки газов на горючесть.
- 3.2.4.1 Для проведения проверки газов на горючесть непосредственно из газового реле необходимо подключить прибор «ПИГГ» согласно схеме, приведенной на рисунке 11.

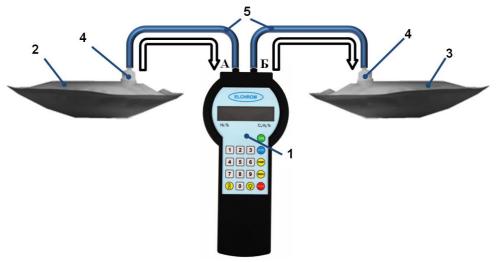
1 — прибор «ПИГГ»; 2 — газовое реле; 3 — пробоотборный вентиль; 4 — фильтр (маслоуловитель); 5 — пробоотборник с гибкой оболочкой; 6 — газоплотный клапан; 7 — трубки гибкие соединительные

Рисунок 11. Схема проверки на горючесть газов из газового реле Для этого необходимо:

- для предотвращения попадания масла в пробоотборный тракт прибора «ПИГГ» присоединить фильтр (маслоуловитель) (4) к пробоотборному вентилю (3) газового реле (2);
- при помощи трубок (7) соединить фильтр (4) и входной штуцер «А»; выходной штуцер «Б» соединить с клапаном (6) пробоотборника с гибкой оболочкой (5);

ВНИМАНИЕ! Применение пробоотборника с гибкой оболочкой осуществляется после ознакомления с инструкцией по эксплуатации на данное изделие.

– открыть до упора клапан (6) пробоотборника с гибкой оболочкой (5) и плавно открыть пробоотборный вентиль (3); **ВНИМАНИЕ!** Не допускать попадание трансформаторного масла пробоотборный тракт прибора «ПИГГ», контролируя уровень


масла в фильтре (4).

- направление протекания газов обозначено стрелками;
- нажать кнопку «START» . Происходит проверка газов на горючесть и запись данных индикации в память прибора «ПИГГ». При превышении установленных значений порогов срабатывания на дисплее происходит световая сигнализация

(мигание значения H_2 и/или $C_x H_v$);

- после завершения процедуры проверки закрыть последовательно пробоотборный вентиль (3) и клапан (6) пробоотборника с гибкой оболочкой (5);
- разобрать систему проверки газов на горючесть.
 3.2.4.2 Для проведения проверки пробы газов на горючесть,

5.2.4.2 для проведения проверки прооы газов на горючесть, предварительно отобранной в пробоотборник с гибкой оболочкой, необходимо подключить прибор «ПИГГ» согласно схеме, приведенной на рисунке 12.

1 — прибор «ПИГГ»; 2 — пробоотборник с гибкой оболочкой «А»; 3 — пробоотборник с гибкой оболочкой «Б»; 4 — газоплотный клапан; 5 — трубки гибкие соединительные

Рисунок 12. Схема проверки на горючесть газов, отобранных в пробоотборник Для этого необходимо:

– при помощи трубок (5) соединить клапан (4) пробоотборника с гибкой оболочкой «А» (2), в который предварительно была отобрана проба газов из газового реле, и входной штуцер «А»; выходной штуцер «Б» соединить с клапаном (4) пустого пробоотборника с гибкой оболочкой «Б» (3);

ВНИМАНИЕ! Применение пробоотборников с гибкой оболочкой осуществляется после ознакомления с инструкцией по эксплуатации на данное изделие.

– открыть до упора клапан (4) пробоотборника с гибкой оболочкой «Б» (3);

- открыть до упора клапан (4) пробоотборника с гибкой оболочкой «А» (2);
 - направление протекания газов обозначено стрелками;
- нажать кнопку «START» . Происходит проверка газов на горючесть и запись данных индикации в память прибора «ПИГГ». При превышении установленных значений порогов срабатывания на дисплее происходит световая сигнализация (мигание значения H_2 и/или C_xH_y);
- закрыть последовательно клапан (4) пробоотборника с гибкой оболочкой «А» (2) и клапан (4) пробоотборника с гибкой оболочкой «Б» (3);
 - разобрать систему проверки газов на горючесть.
- 3.2.5 Нажать кнопку «PUMP» для продувки пробоотборного тракта. После установления нулевых показаний датчиков H_2 и C_xH_y (менее 0.2%) повторно нажать кнопку «PUMP» для завершения продувки пробоотборного тракта;
- 3.2.6 Выключить прибор «ПИГГ» нажатием в течение 10 сек. кнопки «OFF» •
- 3.2.7 Запрещается эксплуатация прибора «ПИГГ» в следующих случаях:
- нарушена герметичность корпуса, имеются механические повреждения;
- при попадании жидкости/масла в пробоотборный тракт прибора;
- при нахождении в окружающей среде агрессивных примесей (сернистых, фосфорорганических соединений, силиконов и тетраэтилсвинца);
- при выводе на дисплее сообщения о неисправности после автоматической самодиагностики прибора;
 - при низком уровне заряда АКБ прибора.
- 3.3 Порядок передачи данных на компьютер
- 3.3.1 Прибор «ПИГГ» имеет возможность передачи данных на персональный компьютер для сохранения результатов и формирования протокола проверки газов на горючесть.
- 3.3.2 Для соединения прибора «ПИГГ» с персональным

- компьютером используется кабель, входящий в комплект поставки.
- 3.3.3 Для формирования протокола проверки газов из газового реле на горючесть необходимо использовать программное обеспечение ПИГГ
- 3.3.4 Требования к персональному компьютеру, процедура установки, а также работа со специализированным программным обеспечением, входящим в комплект поставки, описаны в разделе «Руководство пользователя по программному обеспечению ПИГГ».

4 Меры безопасности

- 4.1 К работе с прибором «ПИГГ» допускаются лица, ознакомленные с РЭ.
- 4.2 Помещения, в которых проводятся работы с прибором «ПИГГ», должны соответствовать «Правилам пожарной безопасности для промышленных предприятий», утвержденных управлением пожарной безопасности.
- 4.3 При работе прибором «ПИГГ» c на объектах электроэнергетики эксплуатации И при электроустановок необходимо соблюдать требования безопасности действующим «Правилам по охране труда при эксплуатации электроустановок».

5 Возможные неисправности, техническое обслуживание и ремонт

5.1 Возможные неисправности, которые могут появиться в процессе эксплуатации прибора «ПИГГ» и соответствующие им сообщения на дисплее прибора «ПИГГ», представлены в таблице 3.

Таблица 3.

№ п/п	Сообщение	Содержание сообщения
1	ERR 0.52	выход из строя датчика водорода H_2
2	0.52 ERR	выход из строя датчика суммы углеводородов $C_x H_y$
3	ERROR	обрыв связи между платой и платой датчиков
4	V	низкий уровень напряжения питания
5	3⊓	запала кнопка

5.2 Техническое обслуживание и ремонт прибора «ПИГГ» должны проводиться только на предприятии-изготовителе или в специализированных сертифицированных организациях.

6 Упаковка

- 6.1 Прибор «ПИГГ» относится к группе III-I по ГОСТ 9.014-78.
- 6.2 Способ упаковки, подготовка к упаковке, транспортная тара и материалы, применяемые при упаковке, порядок размещения соответствуют документации предприятия-изготовителя.

7 Хранение

- 7.1 Прибор «ПИГГ» и сопутствующие принадлежности должны храниться в упакованном виде в отапливаемом помещении при температуре окружающей среды от +5 °C до +40 °C и относительной влажности не более 80 % при температуре +25 °C.
- 7.2 Окружающая среда не взрывоопасная, не содержащая токопроводящей пыли, примесей, агрессивных газов и паров в концентрациях, вызывающих коррозию металлических и пластмассовых частей, повреждение элементов изоляции.

8 Транспортирование

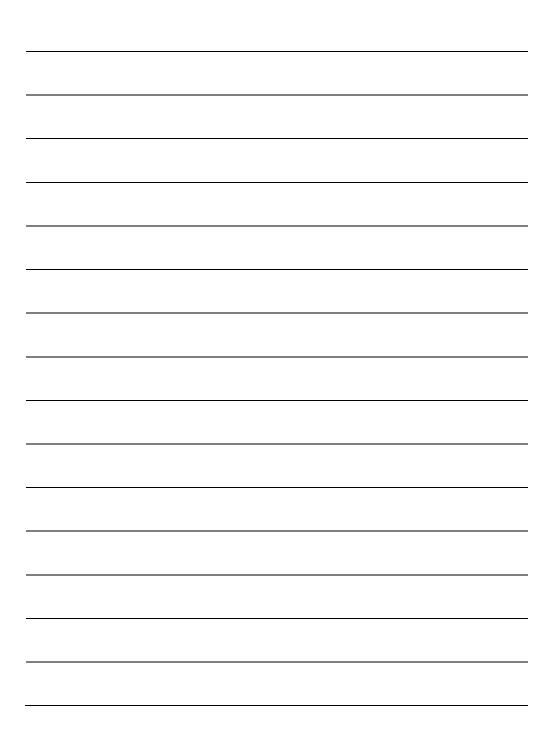
- 8.1 Условия транспортирования прибора должны соответствовать условиям группы 5 по ГОСТ 15150-69, при этом диапазон температур транспортирования от минус 40 до плюс $50\,^{\circ}\mathrm{C}$.
- 8.2 Приборы транспортируются всеми видами транспорта, в том числе в закрытых транспортных средствах, герметизированных отапливаемых отсеках в соответствии с документами:
- «Правила перевозок грузов автомобильным транспортом», 2011 г.;
 - «Правила перевозки грузов», М. «Транспорт», 1983 г.;
- «Общие правила перевозки грузов морем», утвержденные Минморфлотом СССР, 1990 г. (РД 31.10-10-89);
- «Правила перевозок грузов и буксировки плотов и судов речным транспортом», утвержденные Департаментом речного транспорта Минтранса РФ, 1994 г.; «СП 2.5.1250-03 Санитарные правила по организации грузовых перевозок на железнодорожном транспорте», М., 2003 г.

- Во время погрузочно-разгрузочных работ и транспортирования картонные коробки не должны подвергаться резким ударам и воздействию атмосферных осадков. Способ укладки картонных коробок на транспортирующее средство должен исключать их перемещение.
- 8.3 Прибор «ПИГГ» в транспортной таре устойчив к воздействию температуры окружающей среды от -40 до +50 °C, к воздействию повышенной относительной влажности воздуха $(95\pm3)\%$ при температуре +25 °C.

9 Гарантии изготовителя

- 9.1 Предприятие-изготовитель гарантирует соответствие прибора «ПИГГ» требованиям ТУ 4215-100-11425056-2015 при соблюдении условий эксплуатации, транспортирования и хранения.
- 9.2 Гарантийный срок прибора «ПИГГ» устанавливается 12 месяцев.
- 9.3 Гарантийный срок исчисляется со дня ввода изделия в эксплуатацию, но не позднее 6 месяцев со дня изготовления.
- 9.4 По истечению гарантийного срока эксплуатации ремонт прибора «ПИГГ» осуществляется по отдельному договору между потребителем и предприятием-изготовителем.

10 Дополнительная информация


- 10.1 Прибор «ПИГГ» защищен патентом Российской Федерации № 165120 от 17.03.2016 на полезную модель «Прибор для индикации горючих газов».
- «ПИГГ» 10.2 Изготовление прибора осуществляется c лицензионным договором ОТ 01.08.2017 соответствии № 1791-001019 «O предоставлении права неисключительной объекта использование интеллектуальной лицензии собственности».
- 10.3 Предприятие-изготовитель (лицензиат) оставляет за собой право вносить изменения в конструкцию и комплектацию прибора «ПИГГ» с уведомлением Лицензиара о данных изменениях.

Для заметок

ООО «Инжиниринговый Центр ЭЛХРОМ»

Адрес: 107023, Москва, Барабанный пер. 4, оф. IXa

Телефон: +7 (926) 221-98-39

E-mail: elchrom@mail.ru

www.elchrom.ru