УТВЕРЖДАЮ

Заместитель директора ФГУП "ВНИИМС" по производственной метрологии Н.В. Иванникова 2017 г.

Хроматографы ионные

Dionex Integrion и Dionex Integrion RFIC Методика поверки

009-07-17

Настоящая методика распространяется на хроматографы ионные Dionex Integrion и Dionex Integrion RFIC, изготавливаемых Thermo Fisher Scientific Inc, США и устанавливает методику их первичной и периодической поверок.

Межповерочный интервал – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер пункта методики
Внешний осмотр	4.1
Опробование:	4.2
 проверка идентификационных данных ПО 	4.2.1
– определение уровня флуктуационных шумов нулевого сигнала	4.2.2-4.2.3
 – определение дрейфа нулевого сигнала 	4.2.4
Определение метрологических характеристик:	4.3
 определение относительного среднего квадратического откло- нения выходных сигналов 	4.3.1–4.3.3
 – определение относительного изменения выходных сигналов за 8 часов непрерывной работы 	4.3.4-4.3.5

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки применяют следующие средства поверки:
- ГСО 7793-2000 состава нитрат-иона, массовая концентрация нитрат-ионов 1,00 мг/см3, относительная погрешность ±1%;
- ГСО 7775-2000 состава ионов натрия, массовая концентрация ионов натрия 1,00 мг/см3, относительная погрешность ±1%;
 - СО ЭМ №08.12.001 состава глюкозы, концентрация глюкозы 1,00 г/дм³;
 - Вода деионизированная, ГОСТ 25661-83.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью

3 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

3.1 При проведении поверки соблюдают следующие условия:

температура окружающего воздуха, °С	23 ± 5
- атмосферное давление, кПа	84 ÷ 106,7
относительная влажность воздуха, %	$30 \div 90$
 напряжение переменного тока, В 	220 ± 22
частота сети, Гц	50 ± 1

- Подготовительные работы выполняют в соответствии с инструкцией по эксплуатации хроматографа.
- 3.3 Перед проведением поверки готовят контрольные растворы, назначение и содержание анализируемых компонентов в которых приведены в таблице 2.
 - 3.4 Процедура приготовления контрольных растворов приведена в приложении 1.

Таблица 2

Контрольный раствор	Массовая концентрация компонента, мг/дм ³	Объем пробы, мм ³	Элюент	Детектор
Раствор нитрат- ионов или раствор натрий-ионов	10	25	Деионизован- ная вода	Кондуктомет- рический CD
Глюкоза	10	10	50 ммоль/дм ³ NaOH	Электрохимические ED

4 ПРОВЕДЕНИЕ ПОВЕРКИ

4.1 Внешний осмотр

При внешнем осмотре устанавливают:

- соответствие комплектности хроматографа паспортным данным;
- четкость маркировки;
- исправность механизмов и крепежных деталей
- отсутствие протечек жидкостного тракта хроматографа.

4.2 Опробование

4.2.1. Проверка идентификационных данных программного обеспечения хроматографов. Идентификационные данные ПО должны соответствовать Таблице 1 Описания типа. Идентификационные сведения о программе располагаются по следующему пути:

Help -> About Chromeleon.

Контрольная сумма вычисляется по файлу chromeleon.exe.

Функционирование программного обеспечения идентифицируется отображением на экране возможности редактирования доступных областей данных.

4.2.2 Проводят определение уровня флуктуационных шумов и дрейфа нулевого сигнала. Для сбора данных используют OQ/PQ шаблоны ПО Chromeleon или используют процедуры автоматизации отчета по Приложению 2.

Опробование производят при условиях, указанных в таблице 3, в соответствии с инструкцией по эксплуатации хроматографа.

Измерения проводят при отключенной колонке и подавителе. Для этого между насосом и инжектором устанавливают капилляры, соединив их адаптером: капилляр с внутренним диаметром 0.075 мм длиной около 1 м желтого цвета (служит для имитации рабочего давления хроматографа) и капилляр с внутренним диаметром 0.25 мм длиной не менее 6 м — черного цвета (есть в комплекте для установки хроматографа).

Для электрохимических детекторов: устанавливают Au-сменный или полируемый электрод, режим интегрированная амперометрия, волна AAA, (pH, Ag/AgCl референсный электрод).

После выхода хроматографа на режим записывают в течение часа нулевой сигнал детектора.

Уровень флуктуационных шумов нулевого сигнала (∆x) принимают равным максимальному значению амплитуды повторяющихся колебаний нулевого сигнала с периодом не более 20 с.

Значения дрейфа нулевого сигнала принимают равным смещению нулевого сигнала в течение 1 часа.

Таблица 3.

	Детекторы		
Условия поверки	Кондуктометрические CD	Электрохимические ED	
Элюент	Деионизованная вода	50 ммоль/дм ³ NaOH	
Скорость потока элюента	1,0 см ³ /мин	0,25 см ³ /мин	

4.2.3 Значения уровня флуктуационных шумов нулевого сигнала не должны превышать, соответственно:

Детектор	Характеристика
Кондуктометрические	0,2⋅10-9 См
Электрохимический ED	0,05·10 ⁻⁹ Кл

4.2.4 Значения дрейфа нулевого сигнала не должны превышать, соответственно:

Детектор	Характеристика
Кондуктометрические	20·10 ⁻⁹ См/час
Электрохимический ED	60·10 ⁻⁹ Кл/час

- 4.3 Определение метрологических характеристик
- 4.3.1 Определение относительного среднего квадратического отклонения выходного сигнала.

Измерения проводят после процедур опробования и выхода хроматографа на режим. Условия выполнения измерений должны соответствовать п.3.1.

- 4.3.2 Контрольный раствор (табл.2.) вводят в хроматограф не менее 10 раз, измеряют значения выходного сигнала (времени удерживания и площади пика) вычисляют среднее арифметическое значение выходного сигнала (\overline{X}).
- 4.3.3 Относительное среднее квадратическое отклонение выходного сигнала рассчитывают по формуле:

$$S = \frac{100}{\overline{X}} \sqrt{\frac{\sum_{i} \left(X_{i} - \overline{X}\right)^{2}}{n-1}} ,$$

где X_i – і—ое значение параметра выходного сигнала (площади пика, времени удерживания).

Значения относительного среднего квадратического отклонения выходного сигнала не должны превышать норм, приведенных в таблице 4.

4.3.4 Определение относительного изменения выходного сигнала за 8 часов непрерывной работы.

Условия измерений аналогичны, описанным в п.3.1. Проводят повторно операции, по п.4.3.2.

Относительное изменение выходного сигнала за 8 часов непрерывной работы хроматографа рассчитывают по формуле:

$$\delta_{\iota} = \frac{\overline{X}_{\iota} - \overline{X}}{\overline{X}} \cdot 100$$

где X_t – среднее арифметическое значение выходного сигнала через 8 часов непрерывной работы.

4.3.5 Значения относительного изменения выходного сигнала не должны превышать норм, приведенных в таблице 4.

Таблипа 4

Детектор	Относительное среднее квадратическое отклонение выходных сигналов (%)		Относительное изменение выходного сигнала площади
Врем	Время удерживания	Площадь пика	пика за 8 часов непрерывн работы (%)
CD	0,1	0,5	3,0
ED	1,0	3,0	3,0

5 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- Результаты поверки хроматографов заносят в протокол.
- 5.2 Положительные результаты поверки хроматографов оформляют выдачей свидетельства в соответствии с приказом Минпромторга РФ № 1815 от 02.07.2015.
- Хроматографы, не удовлетворяющие требованиям настоящих рекомендаций, к эксплуатации не допускаются. Хроматографы изымаются из обращения. Свидетельство о поверке изымают и выдают извещение о непригодности с указанием причин в соответствии с приказом Минпромторга РФ № 1815 от 02.07.2015.
 - 5.4 После ремонта хроматографы подвергают поверке.

Начальник лаборатории 009 $\mathcal{A}_{\mathcal{M}}$ Е.В. Кулябина Ведущий инженер ФГУП «ВНИИМС» \mathcal{M} О.Н. Мелкова

Приложение 1

МЕТОДИКА ПРИГОТОВЛЕНИЯ АТТЕСТОВАННЫХ РАСТВОРОВ

Методика предназначена для приготовления аттестованных водных растворов кофеина, нитрат-иона, натрий-иона, раствора глюкозы.

1 СРЕДСТВА ИЗМЕРЕНИЙ, ПОСУДА, РЕАКТИВЫ

- 1.1 ГСО 7793-2000 состава раствора нитрат-ионов;
- 1.2 ГСО 7775-2000 состава натрия;

Γ.

- 1.3 СО 08.12.001, состава водного раствора глюкозы;
- 1.4 Весы лабораторные по ГОСТ 24104-01, с верхним пределом взвешивания 200
- 1.5 Мера массы (гири), 2-01 класс точности, ГОСТ 7328.
- 1.6 Колбы мерные наливные 2-100-2 по ГОСТ 1770-74
- 1.7 Пипетки градуированные 1-2-2-0,5по ГОСТ 29227 (I)
- 1.8 Стаканы В-1-50ТС по ГОСТ 25336
- 1.9 Вода деионизированная, ГОСТ 25661-83.

2 ПРОЦЕДУРА ПРИГОТОВЛЕНИЯ

2.1 Приготовление раствора нитрат-ионов с массовой концентрацией 10 мг/дм³ 1 см³ раствора ГСО с массовой концентрацией нитрат-ионов 1 мг/дм³ пипеткой, вместимостью 1 см³ вносят в мерную колбу вместимостью 100 см³ и доводят содержимое колбы до метки деионизированной водой.

Относительная погрешность аттестованного значения массовой концентрации нитрат-ионов в растворе не более 1,2%.

Контрольный раствор используют для определения метрологических характеристик всех кондуктометрических детекторов.

2.2 Приготовление раствора натрий-ионов с массовой концентрацией 10 мг/дм 3

 $1~{\rm cm}^3$ раствора с массовой концентрацией натрий-ионов $1~{\rm mr/дm}^3$ пипеткой, вместимостью $1~{\rm cm}^3$ вносят в мерную колбу вместимостью $100~{\rm cm}^3$ и доводят содержимое колбы до метки деионизированной водой.

Относительная погрешность аттестованного значения массовой концентрации натрий-ионов в растворе не более 1,2%.

Контрольный раствор используют для определения метрологических характеристик всех кондуктометрических детекторов и зарядового детектора, в случае, если нет ГСО нитрат-иона.

- 2.4 Приготовление контрольного раствора с массовой концентрацией глюкозы 10 мг/дм3
- $0,55~{\rm cm}^3$ MCO раствора глюкозы пипеткой вместимостью 1 см3 переносят в мерную колбу вместимостью $100~{\rm cm}3$ и доводят содержимое колбы до метки деионизированной водой.

Относительная погрешность приготовления контрольного раствора ± 1,5 %.

Контрольный раствор используют для определения метрологических характеристик электрохимического детектора.

ПРИМЕР ОБРАБОТКИ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК В ПО CHROMELEON

Данное приложение предназначено для упрощения и автоматизации процедуры расчета метрологических характеристик.

- для расчета шума и дрейфа:

- 1 Для сбора данных для расчета шума и дрейфа создают последовательность (sequence) с одной пробой в списке образцов. Хроматографирование производят без инжекции, для этого в программе Chromelon в последовательности устанавливают тип образца Blank (Бланк). В программе (pgm) устанавливают соответствующую скорость потока элюента и длительность сбора данных сигнала детектора— 60 мин, прочие установки соответствующего детектора по таблице 3.
 - 2. Запускают последовательность
- 2. После окончания работы последовательности, двойным кликом по хроматограмме, по которой ведется расчет шума и дрейфа, открывается отчет. Выбирают вкладку Summary и добавляют новую колонку, нажав правую кнопку мыши (рис 1).

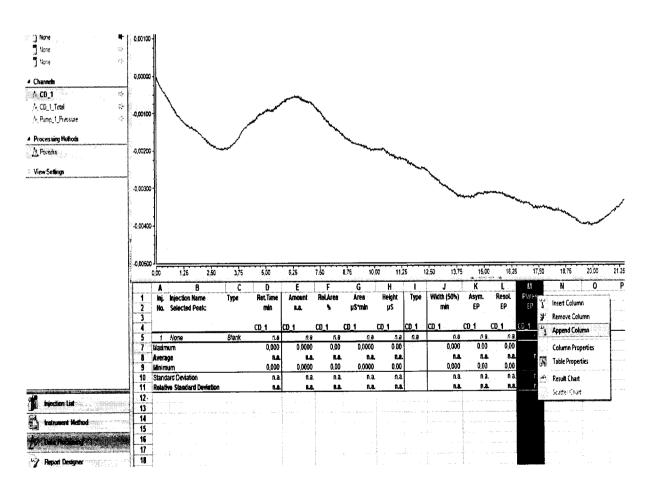
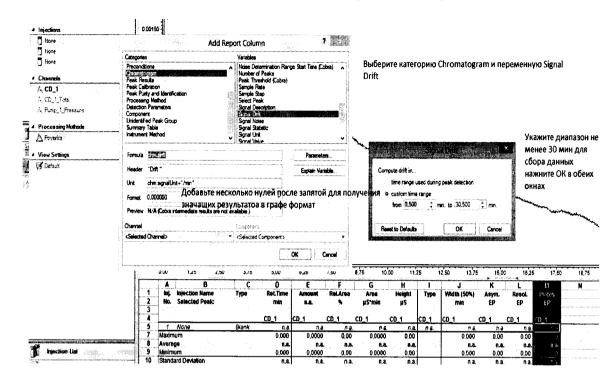



Рис. 1 Окно Summary

2.1 Добавляют характеристики для расчета дрейфа согласно рис. 2.

Рис. 2 Настройка расчета дрейфа в интервале 60 минут

2.2 Аналогично п.2.1. добавляют колонку для расчета шума с окном 20 секунд.

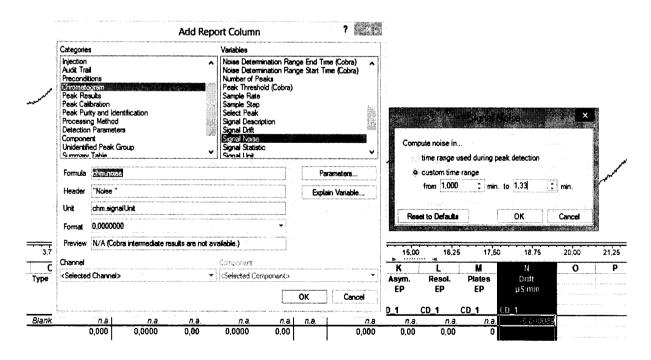


Рис. 3 Настройка расчета шума с окном 20 секунд.

2.3~B таблице на рис. 4 даны значения дрейфа (µS/мин) и пять значений шума (µS) с окном 20 секунд.

Для получения результата модуль значения дрейфа в данном случае μ S/мин переводят в μ S/час (умножив на 60). Для других детекторов значения сигнала приводят в единицах, указанных в методике поверки. Значение шума выражают в единицах, указанных в МП для соответствующего детектора. При расчете шума для предела детектирования берут значения в тех единицах, в которых определяют высоту пика контрольного вещества.

Полученные данные можно распечатать или сохранить в формате Excel.

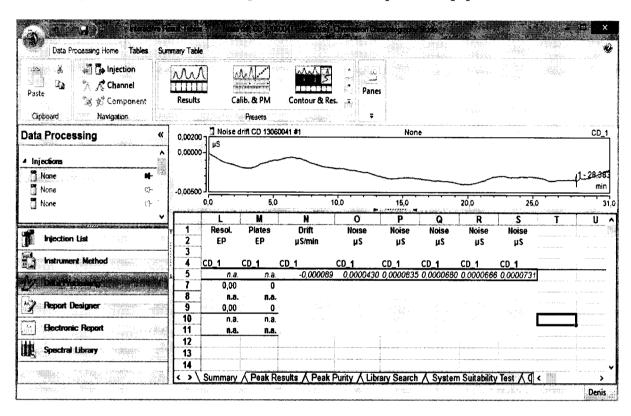


Рис. 4 Пример расчета значений дрейфа и шума

- для расчета относительного СКО выходного сигнала:

- 1 Для сбора данных для расчета СКО выходного сигнала создают последовательность (sequence) с не менее 10-ю пробами в списке образцов. В последовательности устанавливают тип образца unknown (неизвестная проба). В программе (pgm) устанавливают соответствующую скорость потока элюента, длительность сбора данных сигнала детектора— обычно 3 мин, прочие установки соответствующего детектора по таблице 3.
 - 2. Запускают последовательность
- 3. После окончания работы последовательности, сочетанием клавиш Ctrl и левой клавишей мыши выделяют хроматограммы, по которым ведется расчет СКО, нажимаем правую клавишу мыши, открывается меню, выбираем Compare (сравнить), канал детектора (например, CD_1). Открывается отчет. Выбираем вкладку Summary.
 - 4. Полученные данные можно распечатать или сохранить в формате Excel.