ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы спектра оптические AQ6370

Назначение средства измерений

Анализаторы спектра оптические AQ6370 (далее по тексту – анализаторы) предназначены для измерений длины волны и уровня средней мощности оптического излучения, а также проведения анализа оптического спектра в волоконно-оптических системах передачи (далее по тексту - ВОСП), в том числе со спектральным уплотнением каналов.

Описание средства измерений

Принцип действия анализаторов основан на выделении спектральных составляющих оптического излучения, поступающего на твход монохроматора для фильтрации каналов ВОСП с высоким оптическим разрешением и точным выбором соответствующих длин волн и последующей обработки полученной информации для воспроизведения на экране.

Анализаторы представляют собой прибор, состоящий из единого блока, выполненного в трех модификациях – AQ6370D, AQ6373B и AQ6374, каждая из которых оснащается оптическими модулями с цифровыми обозначениями (-01), (-02), (-10), (-12), (-22), отличающимися друг от друга спектральным разрешением, погрешностью измерений длины волны, типом применяемого оптического волокна и типом волоконно-оптических разъёмов (FC или SC).

Управление работой анализаторов, отображение и хранение информации по измеряемым параметрам осуществляется с помощью встроенного компьютера.

Общий вид анализаторов представлен на рисунке 1.

Схема пломбировки от несанкционированного доступа, обозначение места нанесения знака поверки представлены на рисунке 2.

Рисунок 1 – Общий вид анализаторов



Рисунок 2 – Схема пломбировки анализаторов от несанкционированного доступа, обозначение места нанесения знака поверки

Программное обеспечение

Программное обеспечение (далее по тексту – ΠO), входящее в состав анализаторов, выполняет функции отображения на экране прибора информации в удобном для оператора виде, а также задания условий измерений. ΠO разделено на две части.

Метрологически значимая часть ПО прошита в памяти микроконтроллера прибора.

Интерфейсная часть ПО запускается на приборе и служит для отображения, обработки и сохранения результатов измерений.

ПО защищено от несанкционированного доступа путем пломбирования в области крепежных винтов корпуса прибора.

Уровень защиты программного обеспечения «высокий» в соответствии с Р 50.2.077-2014.

Таблица 1 - Илентификационные данные программного обеспечения

тионици т тидентификационные динные программного обеспе тення			
Идентификационные данные (признаки)	Значение		
	AQ6370D	AQ6373B	AQ6374
Идентификационное наименование ПО	AQ6370D	AQ6373B	AQ6374
	firmware	firmware	firmware
Номер версии (идентификационный но-			
мер) ПО	не ниже R1.01	не ниже R1.01	не ниже R1.01
Цифровой идентификатор ПО		-	

Метрологические и технические характеристики

Таблица 2 – Метрологические характеристики AQ6370D

***	Значение		
Наименование характеристики	с модулем (-02)	с модулем (-12)	с модулем (-22)
Диапазон измерений длины		•	
волны, нм	от 600 до 1700		
Пределы допускаемой абсо-	$\pm 0.02^{1)}$		$\pm 0.01^{1)}$
лютной погрешности измере-			
ний длины волны ²⁾ , нм		$\pm 0,1$	
Разрешение по шкале длин	0,05; 0,1; 0,2; 0,5;		
волн ²⁾ , нм	1,0; 2,0	0,02; 0,05; 0,1;	0,2; 0,5; 1,0; 2,0
Диапазон измерений уровня			
средней мощности оптическо-			
го излучения, дБм		от -50 до +10	
Пределы допускаемой относи-			
тельной погрешности измере-			
ний уровня средней мощности			
оптического излучения ³⁾ , дБ		±0,4	

¹⁾ В диапазоне измерений от 1520 до 1580 нм.

Таблица 3 – Метрологические характеристики AQ6373B

Поличение марактериотики	Значение		
Наименование характеристики	с модулем (-01)	с модулем (-10)	
Диапазон измерений длины волны, нм	от 400 до 1100		
Диапазон отображаемых значений длины вол-			
ны, нм	от 350 до 1200		
Пределы допускаемой абсолютной погрешно-	$\pm 0,05^{1)}$		
сти измерений длины волны ²⁾ , нм	±0,2		
Максимальное разрешение по шкале длин		0,02; 0,05; 0,1; 0,2;	
волн ²⁾ , нм	0,1; 0,2; 0,5; 1,0; 2,0	0,5; 1,0; 2,0; 5,0; 10,0	
Диапазон измерений уровня средней мощности			
оптического излучения, дБм	от -40 до 0		
Пределы допускаемой относительной погреш-			
ности измерений уровня средней мощности			
оптического излучения ³⁾ , дБ	±1,0		

¹⁾ На длине волны 633 нм.

 $^{^{2)}}$ Для одномодового волокна (полировка физического контакта PC), после прогрева в течение одного часа, после подстройки с помощью встроенного эталонного источника оптического излучения или лазера с одной продольной модой (длина волны от 1520 до 1560 нм, уровень пика -20 дБм или выше, стабильность уровня $\pm 0,1$ дБ или меньше, стабильность длины волны $\pm 0,01$ нм или меньше).

³⁾ Для длин волн 1310/1550 нм, уровня средней мощности -20 дБм и чувствительности NORMAL, MID, HIGH 1-3.

 $^{^{2)}}$ Для одномодового волокна (полировка физического контакта PC), после прогрева в течение одного часа, после подстройки с помощью встроенного эталонного источника оптического излучения или HE-NE лазера с одной продольной модой (уровень пика -20 дБм или выше, стабильность уровня средней мощности $\pm 0,1$ дБ или меньше, стабильность длины волны $\pm 0,01$ нм или меньше).

³⁾ Для длины волны 850 (с одномодовым волокном), уровня средней мощности -20 дБм, чувствительности MID, HIGH 1-3 и разрешением по длине волны не менее 0,2 нм.

Таблица 4 – Метрологические характеристики AQ6374

таолица + тистрологи теские ха	punt opino i inni i 1 Q 05 / i	
Наименование характеристики	Значение	
паименование характеристики	с модулем (-10)	
Диапазон измерений длины		
волны, нм	от 400 до 1650	
Диапазон отображаемых зна-		
чений длины волны, нм	от 350 до 1750	
Пределы допускаемой абсо-	$\pm 0.05^{1)}$	
лютной погрешности измере-		
ний длины волны $^{2)}$, нм	± 0.2	
Максимальное разрешение по		
шкале длин волн ²⁾ , нм	0,05; 0,1; 0,2; 0,5; 1,0; 2,0; 5,0; 10,0	
Диапазон измерений уровня		
средней мощности оптическо-		
го излучения, дБм	от -40 до 0	
Пределы допускаемой относи-		
тельной погрешности измере-		
ний уровня средней мощности		
оптического излучения ³⁾ , дБ	$\pm 1,0$	

¹⁾ На длинах волн 633 и 1523 нм.

Таблица 5 – Основные технические характеристики

Наименование характеристики	Значение
Чувствительность при измерениях уровня средней мощности	
оптического излучения ¹⁾ , дБм	от -90 до +20
Тип применяемого оптического волокна для AQ6370D:	
- одномодовое (сердцевина/оболочка), мкм	9,5/125
- многомодовое (сердцевина/оболочка), мкм	50/125 и 62,5/125
- волокна с большим диаметром сердцевины ²⁾ , мкм, не более	200
Тип оптического волокна для AQ6373B и AQ6374:	
- одномодовое (сердцевина/оболочка), мкм	9,5/125
- многомодовое (сердцевина/оболочка), мкм	50/125 и 62,5/125
- волокна с большим диаметром сердцевины, мкм, не более	800
Параметры электрического питания:	
- напряжение переменного тока, В	от 90 до 264
- частота переменного тока, Гц	от 47 до 63
Масса измерительного блока, кг, не более	19
Габаритные размеры оптического блока, мм, не более:	
- высота	221
- ширина	426
- глубина	459

 $^{^{2)}}$ Для одномодового волокна (полировка физического контакта PC), после прогрева в течение одного часа, после подстройки с помощью встроенного эталонного источника оптического излучения или лазера с одной продольной модой (HE-NE на 633 нм или с длиной волны от 1520 до 1560 нм, уровень пика -20 дБм или выше, стабильность уровня \pm 0,1 дБ или меньше, стабильность длины волны \pm 0,01 нм или меньше).

 $^{^{3)}}$ Для длины волны 1550 нм, уровня средней мощности -20 дБм, чувствительности HIGH 1-3.

Продолжение таблицы 5

Наименование характеристики	Значение	
Условия эксплуатации:		
- температура окружающей среды, °С	от +5 до +35	
- относительная влажность (без конденсата), %	от 20 до 80	

¹³⁰⁰ до 1620 нм.

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации печатным способом и в виде наклейки на переднюю панель корпуса анализатора.

Комплектность средства измерений

Таблица 6 – Комплектность средства измерений

Наименование	Обозначение	Количество
Анализатор спектра оптический	модификации	1 шт.
	AQ6370D/AQ6373B/AQ6374 *	
Сетевой шнур	-	1 шт.
Руководство по эксплуатации	-	1 экз.
* Модификация указывается при заказе		

Поверка

осуществляется по документу Р 50.2.069-2009 «Государственная система обеспечения единства измерений. Спектроанализаторы оптические в волоконно-оптических системах передачи информации. Методика поверки».

Основные средства поверки:

- рабочий эталон единицы длины волны для волоконно-оптических систем передачи информации в диапазоне значений от 400 до 3400 нм по ГОСТ 8.585-2013;
- рабочий эталон единицы средней мощности непрерывного и импульсного оптического излучения в диапазоне от 10^{-6} до 1 Вт на длинах волн от 500 до 1700 нм по ГОСТ 8.585-2013.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на заднюю панель анализатора в соответствии с рисунком 2.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к анализаторам спектра оптическим АQ6370.

ГОСТ 8.585-2013 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны оптического излучения для волоконно-оптических систем связи и передачи информации

Техническая документация фирмы «Yokogawa Test & Measurement Corporation», Япония

²⁾ Для модулей (-12) и (-22).

Изготовитель

Фирма «Yokogawa Test & Measurement Corporation», Япония Адрес: 2-9-32 Nakacho, Musashino-shi, Tokyo, 180-8750, Japan

Телефон: 81-422-52-6237 Факс: 81-422-52-6462

Web-сайт: www.yokogawa.com

Заявитель

Общество с ограниченной ответственностью «Форком» (ООО «Форком»)

ИНН 7715458715

Адрес: 111402, г. Москва, ул. Кетчерская, д. 16, оф. 401

Телефон: +7 (495) 956-76-87

E-mail: info@4comt.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт оптико-физических измерений»

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: +7 (495) 437-56-33 Факс: +7 (495) 437-31-47 E-mail: vniiofi@vniiofi.ru

Аттестат аккредитации Φ ГУП «ВНИИО Φ И» по проведению испытаний средств измерений в целях утверждения типа № 30003-2014 от 23.06.2014 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. « ___ » _____2019 г.